The answer would be b.100 because its clearly not a right triangle
Given a solution

, we can attempt to find a solution of the form

. We have derivatives



Substituting into the ODE, we get


Setting

, we end up with the linear ODE

Multiplying both sides by

, we have

and noting that
![\dfrac{\mathrm d}{\mathrm dx}\left[x(\ln x)^2\right]=(\ln x)^2+\dfrac{2x\ln x}x=(\ln x)^2+2\ln x](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5Cleft%5Bx%28%5Cln%20x%29%5E2%5Cright%5D%3D%28%5Cln%20x%29%5E2%2B%5Cdfrac%7B2x%5Cln%20x%7Dx%3D%28%5Cln%20x%29%5E2%2B2%5Cln%20x)
we can write the ODE as
![\dfrac{\mathrm d}{\mathrm dx}\left[wx(\ln x)^2\right]=0](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5Cleft%5Bwx%28%5Cln%20x%29%5E2%5Cright%5D%3D0)
Integrating both sides with respect to

, we get


Now solve for

:


So you have

and given that

, the second term in

is already taken into account in the solution set, which means that

, i.e. any constant solution is in the solution set.
Answer: ∡RSQ and ∡TSQ
Supplementary angles are angles that add up to 180 degrees. We can see in the picture that both angles are located on the same line, and no other angles are involved, so they must equal 180.
We can also use the process of elimination:
- ∡RSQ and ∡UVS are congruent because they are consecutive angles.
- ∡RSQ and ∡WVX are also congruent because they are alternate exterior angles.
- ∡RSQ and ∡TSV are also congruent because they are vertical angles.
Density = Mass/Volume
Mass= Density x volume
Volume= mass/density