So we are given the mean and the s.d.. The mean is 100 and the sd is 15 and we are trying the select a random person who has an I.Q. of over 126. So our first step is to use our z-score equation:
z = x - mean/s.d.
where x is our I.Q. we are looking for
So we plug in our numbers and we get:
126-100/15 = 1.73333
Next we look at our z-score table for our P-value and I got 0.9582
Since we are looking for a person who has an I.Q. higher than 126, we do 1 - P. So we get
1 - 0.9582 = 0.0418
Since they are asking for the probability, we multiply our P-value by 100, and we get
0.0418 * 100 = 4.18%
And our answer is
4.18% that a randomly selected person has an I.Q. above 126
Hopes this helps!
Answer:
a =
Step-by-step explanation:
Given:
f(x) = log(x)
and,
f(kaa) = kf(a)
now applying the given function, we get
⇒ log(kaa) = k × log(a)
or
⇒ log(ka²) = k × log(a)
Now, we know the property of the log function that
log(AB) = log(A) + log(B)
and,
log(Aᵇ) = b × log(A)
Thus,
⇒ log(k) + log(a²) = k × log(a) (using log(AB) = log(A) + log(B) )
or
⇒ log(k) + 2log(a) = k × log(a) (using log(Aᵇ) = b × log(A) )
or
⇒ k × log(a) - 2log(a) = log(k)
or
⇒ log(a) × (k - 2) = log(k)
or
⇒ log(a) = (k - 2)⁻¹ × log(k)
or
⇒ log(a) = (using log(Aᵇ) = b × log(A) )
taking anti-log both sides
⇒ a =
Answer:
the answer is 10 to the 5th power
Step-by-step explanation:
Answer: If you are suppose to write an algebraic expression it is: 5 - 2x = 3x - 5
If you are suppose to solve the answer is:
5-2x=3x-5
-2x=3x-10
-5x=-10
x=2