Answer: Use employee identification numbers to randomly select 200 employees
Step-by-step explanation:
Random sampling refers to a sampling technique whereby each sample has an equal chance of being selected. It is an unbiased representation of the entire population and this is vital in drawing conclusion.
From the options given, the best way to randomly choose these 200 employees will be to use employee identification numbers to randomly select 200 employees.
Answer:

Step-by-step explanation:
There are infinite answers
All you have to do is changed the last number 3, to any real number greater or less than 3
Answer:
(1, 4) and (1,3), because they have the same x-value
Step-by-step explanation:
For a relation to be regarded as a function, there should be no two y-values assigned to an x-value. However, two different x-values can have the same y-values.
In the relation given in the equation, the ordered pairs (1,4) and (1,3), prevent the relation from being a function because, two y-values were assigned to the same x-value. x = 1, is having y = 4, and 3 respectively.
Therefore, the relation is not a function anymore if both ordered pairs are included.
<em>The ordered pairs which make the relation not to be a function are: "(1, 4) and (1,3), because they have the same x-value".</em>

now, if we take 2000 to be the 100%, what is 2200? well, 2200 is just 100% + 10%, namely 110%, and if we change that percent format to a decimal, we simply divide it by 100, thus
.
so, 1.1 is the decimal number we multiply a term to get the next term, namely 1.1 is the common ratio.
![\bf \qquad \qquad \textit{sum of a finite geometric sequence}\\\\S_n=\sum\limits_{i=1}^{n}\ a_1\cdot r^{i-1}\implies S_n=a_1\left( \cfrac{1-r^n}{1-r} \right)\quad \begin{cases}n=n^{th}\ term\\a_1=\textit{first term's value}\\r=\textit{common ratio}\\----------\\a_1=2000\\r=1.1\\n=4\end{cases}\\\\\\S_4=2000\left[ \cfrac{1-(1.1)^4}{1-1.1} \right]\implies S_4=2000\left(\cfrac{-0.4641}{-0.1} \right)\\\\\\S_4=2000(4.641)\implies S_4=9282](https://tex.z-dn.net/?f=%20%5Cbf%20%5Cqquad%20%5Cqquad%20%5Ctextit%7Bsum%20of%20a%20finite%20geometric%20sequence%7D%5C%5C%5C%5CS_n%3D%5Csum%5Climits_%7Bi%3D1%7D%5E%7Bn%7D%5C%20a_1%5Ccdot%20r%5E%7Bi-1%7D%5Cimplies%20S_n%3Da_1%5Cleft%28%20%5Ccfrac%7B1-r%5En%7D%7B1-r%7D%20%5Cright%29%5Cquad%20%5Cbegin%7Bcases%7Dn%3Dn%5E%7Bth%7D%5C%20term%5C%5Ca_1%3D%5Ctextit%7Bfirst%20term%27s%20value%7D%5C%5Cr%3D%5Ctextit%7Bcommon%20ratio%7D%5C%5C----------%5C%5Ca_1%3D2000%5C%5Cr%3D1.1%5C%5Cn%3D4%5Cend%7Bcases%7D%5C%5C%5C%5C%5C%5CS_4%3D2000%5Cleft%5B%20%5Ccfrac%7B1-%281.1%29%5E4%7D%7B1-1.1%7D%20%5Cright%5D%5Cimplies%20S_4%3D2000%5Cleft%28%5Ccfrac%7B-0.4641%7D%7B-0.1%7D%20%20%5Cright%29%5C%5C%5C%5C%5C%5CS_4%3D2000%284.641%29%5Cimplies%20S_4%3D9282%20)