Find the domain by finding where the function is defined. The range is the set of values that correspond with the domain.
Domain: (- infinity, infinity)
Range: (- infinity, -2)
(6 - 2) - 1 = 4 - 1 = 3
6 - (2 - 1) = 6 - 1 = 5
The associative rule doesn't work for subtraction because you get different results when you move the parentheses.
53/4•2/6=1 11/12
Because you must turn 5 3/4 into an improper fraction. So 23/4•2/6. Next you are able to cross reduce because 2 goes into 2 and four so now you have 23/2•1/6 now just multiply across. 2•6=12 and 23•1=23 so now you have 23/12 which equals
1 11/12
Answer:
see explanation
Step-by-step explanation:
The equation of a parabola in vertex form is
y = a(x - h)² + k
where (h, k) are the coordinates of the vertex and a is a multiplier
Given
y = x² - 6x + 3
To complete the square
add/subtract ( half the coefficient of the x- term)² to x² - 6x
y = x² + 2(- 3)x + 9 - 9 + 3
= (x - 3)² - 6 ← in vertex form
• If a > 0 then vertex is a minimum
• If a < 0 then vertex is a maximum
Here a = 1 > 0, thus
(3, - 6 ) is a minimum