If <em>c</em> > 0, then <em>f(x</em> - <em>c)</em> is a shift of <em>f(x)</em> by <em>c</em> units to the right, and <em>f(x</em> + <em>c)</em> is a shift by <em>c</em> units to the left.
If <em>d</em> > 0, then <em>f(x)</em> - <em>d</em> is a shift by <em>d</em> units downward, and <em>f(x)</em> + <em>d</em> is a shift by <em>d</em> units upward.
Let <em>g(x)</em> = <em>x</em>. Then <em>f(x)</em> = <em>g(x</em> + <em>a)</em> - <em>b</em> = (<em>x</em> + <em>a</em>) - <em>b</em>. So to get <em>g(x)</em>, we translate <em>f(x)</em> to the left by <em>a</em> units, and down by <em>b</em> units.
Note that we can also interpret the translation as
• a shift upward of <em>a</em> - <em>b</em> units, since
(<em>x</em> + <em>a</em>) - <em>b</em> = <em>x</em> + (<em>a</em> - <em>b</em>)
• a shift <em>b</em> units to the right and <em>a</em> units upward, since
(<em>x</em> + <em>a</em>) - <em>b</em> = <em>x</em> + (<em>a</em> - <em>b</em>) = <em>x</em> + (- <em>b</em> + <em>a</em>) = (<em>x</em> - <em>b</em>) + <em>a</em>.
Answer:
x=-1
Step-by-step explanation:
y=4x+10
y=3x+9
-----------
4x+10=3x+9
4x-3x=9-10
x=-1
Answer:
from now on don't ask same qn two times or more it would be waste of your points
got it??
Answer:
Assuming this is the full problem.
3x^2-8x+4
Step-by-step explanation: