The sample must be sufficiently soluble (fig. 2) to yield an NMR spectrum. For 1H and 1H observed NMR, it is recommended to dissolve between 2 and 10 mg in between 0.6 and 1 mL of solvent so that the sample depth is at least 4.5 cm in the tube (fig. 3).
Answer: c. At equilibrium, the concentration of reactants is greater than the products
Explanation:
Equilibrium constant for a reaction is the ratio of concentration of products to the concentration of reactants each raised to the power its stoichiometric coefficients.
For the reaction:

Equilibrium constant is given as:
![K_{eq}=\frac{[N_2O_5]}{[NO_2]\times [NO_3]}](https://tex.z-dn.net/?f=K_%7Beq%7D%3D%5Cfrac%7B%5BN_2O_5%5D%7D%7B%5BNO_2%5D%5Ctimes%20%5BNO_3%5D%7D)
![2.1\times 10^{-20}=\frac{[N_2O_5]}{[NO_2]\times [NO_3]}](https://tex.z-dn.net/?f=2.1%5Ctimes%2010%5E%7B-20%7D%3D%5Cfrac%7B%5BN_2O_5%5D%7D%7B%5BNO_2%5D%5Ctimes%20%5BNO_3%5D%7D)
When
a) K > 1, the concentration of products is greater than the concentration of reactants
b) K < 1, the concentration of reactants is greater than the concentration of products
c) K= 1, the reaction is at equilibrium, the concentration of reactants is equal to the concentration of products
Thus as
is
which is less than 1,
the concentration of reactants is greater than the concentration of products
the double helix is hydrogen bonded through the bases only so the bases are inside the helix only
as adenine combines with thymine and guanine with cytosine
phosphate are in the exterior of it
sugar groups constitute the double helix.
V=84.0 mL = 84.0 cm³
m=609.0 g
p=m/v
p=609.0/84.0=7.25 g/cm³
Answer: The value of
is 0.0057
Explanation:
Initial moles of
= 0.900 mole
Volume of container = 2.00 L
Initial concentration of
equilibrium concentration of
[/tex]
The given balanced equilibrium reaction is,
Initial conc. 0.450 M 0 0
At eqm. conc. (0.450 -2x) M (2x) M (x) M
The expression for equilibrium constant for this reaction will be,
we are given : x = 0.055
Now put all the given values in this expression, we get :
Thus the value of the equilibrium constant is 0.0057