Answer:
Relative and average atomic mass both describe properties of an element related to its different isotopes.
Explanation:However, relative atomic mass is a standardized number that's assumed to be correct under most circumstances, while average atomic mass is only true for a specific sample.
The mass number is the summation of number of proton and neutron present in a nucleus of an atom. For the neutral atom the number of positive charge (number of proton) must be equal to the number of electrons. The number of electrons present in an atom is the atomic number of the atom. The standard way to express the mass number (a) and atomic number (m) of a atom (say X) is
. Now for silicon number of electron or atomic number is 14. And the mass number (a) given 29. Thus the expression nucleus of silicon will be 
Explanation:
a) when zinc burnt in oxygen.
2Zn + O2 -----∆-----> 2ZnO(black residue)
b) when carbon burnt in oxygen.
C+O2----∆---> CO2.
c) when sulphur burnt in oxygen.
S+O2-----∆-----> SO2.
d) when Calcium burnt in oxygen.
2Ca+O2-----∆-----> 2CaO(black residue)
e) when Magnesium burnt in oxygen.
2Mg+O2-----∆----> 2MgO.
f) when sodium burnt in oxygen.
4Na+O2----∆-----> 2Na2O.
hope all these reactions help you.
Answer:
2M
Explanation:
Molarity refers to the molar concentration of a solution. It can be calculated by using the formula as follows:
Molarity (M) = number of moles (n) ÷ volume (V)
Based on the information provided in this question, 2 moles of salt is dissolved to form 1 liter of solution. This means that n = 2mol, V = 1L
Molarity = n/V
Molarity = 2/1
Molarity = 2M
Following are the chemical elements that have atomic mass greater than 173.5 u and atomic number less than 75.
1. Lutetium
Atomic Number = 71
Atomic Mass = 174.97 u
2. Hafnium
Atomic Number = 72
Atomic Mass = 178.49 u
3. Tantalum
Atomic Number = 73
Atomic Mass = 180.95 u
4. Tungsten
Atomic Number = 74
Atomic Mass = 183.85 u