Answer:
3. 3.45×10¯¹⁸ J.
4. 1.25×10¹⁵ Hz.
Explanation:
3. Determination of the energy of the photon.
Frequency (v) = 5.2×10¹⁵ Hz
Planck's constant (h) = 6.626×10¯³⁴ Js
Energy (E) =?
The energy of the photon can be obtained by using the following formula:
E = hv
E = 6.626×10¯³⁴ × 5.2×10¹⁵
E = 3.45×10¯¹⁸ J
Thus, the energy of the photon is 3.45×10¯¹⁸ J
4. Determination of the frequency of the radiation.
Wavelength (λ) = 2.4×10¯⁵ cm
Velocity (c) = 3×10⁸ m/s
Frequency (v) =?
Next, we shall convert 2.4×10¯⁵ cm to metre (m). This can be obtained as follow:
100 cm = 1 m
Therefore,
2.4×10¯⁵ cm = 2.4×10¯⁵ cm × 1 m /100 cm
2.4×10¯⁵ cm = 2.4×10¯⁷ m
Thus, 2.4×10¯⁵ cm is equivalent to 2.4×10¯⁷ m
Finally, we shall determine the frequency of the radiation by using the following formula as illustrated below:
Wavelength (λ) = 2.4×10¯⁷ m
Velocity (c) = 3×10⁸ m/s
Frequency (v) =?
v = c / λ
v = 3×10⁸ / 2.4×10¯⁷
v = 1.25×10¹⁵ Hz
Thus, the frequency of the radiation is 1.25×10¹⁵ Hz.
Answer:
212.5 mL
both the original and the diluted solution have 0.765 moles of KCl
Explanation:
c1V1 = c2V2
V2 = c1V1/c2 = (1.8 M×425 mL)/1.2 M = 637.5 mL
(637.5 - 425) mL = 212.5 mL
n = (1.8 mol/L)(0.425 L) = 0.765 moles of KCl
since it's a dilution, the diluted solution has the same number of moles as the original solution, 0.765 moles of KCl
Answer:
<h2>7.54 atm </h2>
Explanation:
The required pressure can be found by using the formula for Boyle's law which is
![P_2 = \frac{P_1V_1}{V_2} \\](https://tex.z-dn.net/?f=P_2%20%3D%20%20%5Cfrac%7BP_1V_1%7D%7BV_2%7D%20%20%5C%5C)
where
P1 is the initial pressure
P2 is the final pressure
V1 is the initial volume
V2 is the final volume
From the question we have
![P_2 = \frac{1 \times 196}{26} = \frac{196}{26} \\ = 7.538461...](https://tex.z-dn.net/?f=P_2%20%3D%20%20%5Cfrac%7B1%20%5Ctimes%20196%7D%7B26%7D%20%20%3D%20%20%5Cfrac%7B196%7D%7B26%7D%20%20%20%5C%5C%20%3D%207.538461...)
We have the final answer as
<h3>7.54 atm </h3>
Hope this helps you
The answer is 4.41x10^1 m.
Explanation:
You would use this formula to calculate it
λ = C/f
Where,
λ (Lambda) = Wavelength in meters
c = Speed of Light (299,792,458 m/s)
f = Frequency
So we have the frequency, 68 Hz, and we have the speed of light. Now we put it into the equation and it will look like this:
λ= (299,792,458 m/s) / (68 Hz)
λ= 4.41x10^1
Answer:
0.008 ÷ 51.3 = 0.00015594541910331380.00015594541910331382Round 0.0001559454191033138 → 0.0002 (Sig Figs: 1)