Answer:
21.77% probability that the proportion who are satisfied with the way that things are going in their life exceeds 0.85
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
For proportions p in a sample of size n, we have that 
In this problem:

In a sample of 100 Americans, what is the probability that the proportion who are satisfied with the way that things are going in their life exceeds 0.85
This is 1 subtracted by the pvalue of Z when X = 0.85. So



has a pvalue of 0.7823
1 - 0.7823 = 0.2177
21.77% probability that the proportion who are satisfied with the way that things are going in their life exceeds 0.85
Answer:
y = -3/4x -4
Step-by-step explanation:
3x+4y=-16
Slope intercept form is
y = mx+b where m is the slope and b is the y intercept
Subtract 3x from each side
3x -3x+4y=-3x-16
4y = -3x-16
Divide each side by 4
4y/4 = -3x/4 - 16/4
y = -3/4x -4
The top answer is a virus please DONT click it
12 yards of white 8 yards of blue and 2 yards of pink