1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
drek231 [11]
2 years ago
7

30 POINTS. HELP

Mathematics
1 answer:
MakcuM [25]2 years ago
5 0

Hi there!  

»»————- ★ ————-««

I believe your answer is:  

slope - 3

y - intercept - 40

»»————- ★ ————-««  

Here’s why:  

⸻⸻⸻⸻

y = 3x + 40\\\rule{150}{0.5}\\y \text{ - Total service fee.}\\\\x \text{ - Number of miles the car is towed.}\\\rule{150}{0.5}\\\text{The given equation is in slope-intercept form.}\\y = mx + b\\\\\rightarrow  m \text{ - slope}\\\rightarrow b \text{ - y-intercept}\\\rule{150}{0.5}\\\text{3 takes m's spot so it is the slope.}

\text{This means that the company will charge 3 dollars for every mile the car is towed.}\\\rule{150}{0.5}\\\text{40 takes b's place to it is the y-intercept. This means that 40 would be the base fee.}

»»————- ★ ————-««  

Hope this helps you. I apologize if it’s incorrect.  

You might be interested in
Evaluate the limit
wel

We are given with a limit and we need to find it's value so let's start !!!!

{\quad \qquad \blacktriangleright \blacktriangleright \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}}

But , before starting , let's recall an identity which is the <em>main key</em> to answer this question

  • {\boxed{\bf{a^{2}-b^{2}=(a+b)(a-b)}}}

Consider The limit ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}}

Now as directly putting the limit will lead to <em>indeterminate form 0/0.</em> So , <em>Rationalizing</em> the <em>numerator</em> i.e multiplying both numerator and denominator by the <em>conjugate of numerator </em>

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}\times \dfrac{\sqrt{x}+\sqrt{3\sqrt{x}-2}}{\sqrt{x}+\sqrt{3\sqrt{x}-2}}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-\sqrt{3\sqrt{x}-2})(\sqrt{x}+\sqrt{3\sqrt{x}-2})}{(x^{2}-4^{2})(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Using the above algebraic identity ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x})^{2}-(\sqrt{3\sqrt{x}-2})^{2}}{(x-4)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-(3\sqrt{x}-2)}{(x-4)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}+2}{\{(\sqrt{x})^{2}-2^{2}\}(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , here we <em>need</em> to <em>eliminate (√x-2)</em> from the denominator somehow , or the limit will again be <em>indeterminate </em>,so if you think <em>carefully</em> as <em>I thought</em> after <em>seeing the question</em> i.e what if we <em>add 4 and subtract 4</em> in <em>numerator</em> ? So let's try !

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}-2+4-4}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(x-4)+2+4-3\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , using the same above identity ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)+6-3\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)+3(2-\sqrt{x})}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , take minus sign common in <em>numerator</em> from 2nd term , so that we can <em>take (√x-2) common</em> from both terms

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)-3(\sqrt{x}-2)}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , take<em> (√x-2) common</em> in numerator ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)\{(\sqrt{x}+2)-3\}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Cancelling the <em>radical</em> that makes our <em>limit again and again</em> <em>indeterminate</em> ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\cancel{(\sqrt{x}-2)}\{(\sqrt{x}+2)-3\}}{\cancel{(\sqrt{x}-2)}(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}+2-3)}{(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-1)}{(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , <em>putting the limit ;</em>

{:\implies \quad \sf \dfrac{\sqrt{4}-1}{(\sqrt{4}+2)(4+4)(\sqrt{4}+\sqrt{3\sqrt{4}-2})}}

{:\implies \quad \sf \dfrac{2-1}{(2+2)(4+4)(2+\sqrt{3\times 2-2})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+\sqrt{6-2})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+\sqrt{4})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+2)}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(4)}}

{:\implies \quad \sf \dfrac{1}{128}}

{:\implies \quad \bf \therefore \underline{\underline{\displaystyle \bf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}=\dfrac{1}{128}}}}

3 0
2 years ago
Read 2 more answers
Find the next four times in each sequence
Ierofanga [76]

Answer:

For part 6: 39

Step-by-step explanation:

You have your starting number and then it gets added to a product of two numbers. 8 + (2x2) = 12. 12 + (2x3) = 18. 18 + (3x3) = 27. 27 + (3x4) = 39. That is the most logical answer I was able to find.

4 0
4 years ago
Explain why a square is always a rectangle but a rectangle is not always a square.
Alekssandra [29.7K]
A rectangle is a shape that has 4 sides and 4 90 degree angles, a square however has 4 equal sides, and 4 90 degree angles
3 0
3 years ago
Read 2 more answers
How are y'all doing? I'm bored :/<br> Also, good morning
Arturiano [62]
Amazing i hope you have a spectacular day
3 0
3 years ago
Read 2 more answers
I'll give brainliest to whoever answers this question first with correct steps that I can understand
Kazeer [188]

Answer:

You multiply 64 and 4 or 32 by 8 and both should equal 256 grams .-.

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Other questions:
  • How can I explain the place value relationship when the same two digits are next to each other
    7·1 answer
  • Please help asap 30 pts
    7·1 answer
  • The radius of a sphere is 6 units.
    11·1 answer
  • What is the area of a circle with a circuference of 12pie
    7·1 answer
  • Find the common ratio of the sequence. 3,-9,27,-81
    15·1 answer
  • Find the volume of the cylinder in terms of pi
    11·1 answer
  • 50a3b-8ab factor the expression completely. part a: factor out the gcf (5 points) part b: factor the difference of perfect squar
    11·1 answer
  • What is the estimated weight of three containers weighing 1.656 kg each?
    5·1 answer
  • Isabelle earns $200 a week at a bookstore plus $2 for every magazine she sells. She uses the equation to represent her earnings,
    7·2 answers
  • Express <img src="https://tex.z-dn.net/?f=2x%5E%7B2%7D" id="TexFormula1" title="2x^{2}" alt="2x^{2}" align="absmiddle" class="la
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!