1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IgorC [24]
2 years ago
6

Evaluate the limit

Mathematics
2 answers:
Digiron [165]2 years ago
6 0

We can transform the limand into a proper rational expression by substitution.

Let y = √x. Then as x approaches 4, y will approach √4 = 2. So

\displaystyle \lim_{x\to4}\frac{\sqrt x - \sqrt{3 \sqrt x - 2}}{x^2 - 16} = \lim_{y\to2} \frac{y - \sqrt{3y-2}}{y^4 - 16}

Now let z = √(3y - 2). Then as y approaches 2, z will approach √(3•2 - 2) = 2 as well. It follows that y = (z² + 2)/3, so that

\displaystyle \lim_{y\to2} \frac{y - \sqrt{3y-2}}{y^4-16} = \lim_{z\to2} \frac{\frac{z^2+2}3 - z}{\frac{(z^2+2)^4}{81}-16} \\\\ = \lim_{z\to2} \frac{27(z^2+2)-81z}{(z^2+2)^4 - 1296} \\\\ = 27 \lim_{z\to2} \frac{z^2 - 3z + 2}{z^8 + 8z^6 + 24z^4 + 32z^2 - 1280}

Plugging z = 2 into the denominator returns a value of 0, which means z - 2 divides z⁸ + 8z⁶ + 24z⁴ + 32z² - 1280 exactly. Polynomial division shows that

\dfrac{z^8 + 8z^6 + 24z^4 + 32z^2 - 1280}{z-2} \\\\ = z^7+2z^6+12z^5+24z^4+72z^3+144z^2+320z+640

and it's easy to see that the numerator is also divisible by z - 2, since

z^2 - 3z + 2 = (z - 1) (z - 2)

So, we can eliminate the factor of z - 2 and we're left with

\displaystyle 27 \lim_{z\to2} \frac{z^2 - 3z + 2}{z^8 + 8z^6 + 24z^4 + 32z^2 - 1280} = 27 \lim_{z\to2}\frac{z-1}{z^7+\cdots+640}

The remaining limand is continuous at z = 2, so we can evaluate the limit by direct substitution:

\displaystyle 27 \lim_{z\to2}\frac{z-1}{z^7+\cdots+640} = \frac{27}{3456} = \boxed{\frac1{128}}

wel2 years ago
3 0

We are given with a limit and we need to find it's value so let's start !!!!

{\quad \qquad \blacktriangleright \blacktriangleright \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}}

But , before starting , let's recall an identity which is the <em>main key</em> to answer this question

  • {\boxed{\bf{a^{2}-b^{2}=(a+b)(a-b)}}}

Consider The limit ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}}

Now as directly putting the limit will lead to <em>indeterminate form 0/0.</em> So , <em>Rationalizing</em> the <em>numerator</em> i.e multiplying both numerator and denominator by the <em>conjugate of numerator </em>

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}\times \dfrac{\sqrt{x}+\sqrt{3\sqrt{x}-2}}{\sqrt{x}+\sqrt{3\sqrt{x}-2}}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-\sqrt{3\sqrt{x}-2})(\sqrt{x}+\sqrt{3\sqrt{x}-2})}{(x^{2}-4^{2})(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Using the above algebraic identity ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x})^{2}-(\sqrt{3\sqrt{x}-2})^{2}}{(x-4)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-(3\sqrt{x}-2)}{(x-4)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}+2}{\{(\sqrt{x})^{2}-2^{2}\}(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , here we <em>need</em> to <em>eliminate (√x-2)</em> from the denominator somehow , or the limit will again be <em>indeterminate </em>,so if you think <em>carefully</em> as <em>I thought</em> after <em>seeing the question</em> i.e what if we <em>add 4 and subtract 4</em> in <em>numerator</em> ? So let's try !

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}-2+4-4}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(x-4)+2+4-3\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , using the same above identity ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)+6-3\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)+3(2-\sqrt{x})}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , take minus sign common in <em>numerator</em> from 2nd term , so that we can <em>take (√x-2) common</em> from both terms

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)-3(\sqrt{x}-2)}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , take<em> (√x-2) common</em> in numerator ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)\{(\sqrt{x}+2)-3\}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Cancelling the <em>radical</em> that makes our <em>limit again and again</em> <em>indeterminate</em> ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\cancel{(\sqrt{x}-2)}\{(\sqrt{x}+2)-3\}}{\cancel{(\sqrt{x}-2)}(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}+2-3)}{(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-1)}{(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , <em>putting the limit ;</em>

{:\implies \quad \sf \dfrac{\sqrt{4}-1}{(\sqrt{4}+2)(4+4)(\sqrt{4}+\sqrt{3\sqrt{4}-2})}}

{:\implies \quad \sf \dfrac{2-1}{(2+2)(4+4)(2+\sqrt{3\times 2-2})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+\sqrt{6-2})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+\sqrt{4})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+2)}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(4)}}

{:\implies \quad \sf \dfrac{1}{128}}

{:\implies \quad \bf \therefore \underline{\underline{\displaystyle \bf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}=\dfrac{1}{128}}}}

You might be interested in
A hot air balloon hovers 75 feet above the ground. The balloon is tethered to the ground
DIA [1.3K]

Angle of elevation is 37°

<u>Step-by-step explanation:</u>

As we have the opposite side 75 ft to the angle and the hypotenuse 125 ft, we can find the sine value as,

sin θ = opp/ hyp

       = 75/125

     = 0.6

θ = sin⁻¹ (0.6) = 36.9°≈ 37°

So angle of elevation is 37°.

3 0
3 years ago
Find the area of the shaded region. Round to the nearest tenth.
UkoKoshka [18]

Answer: 9.3

Step-by-step explanation:

Find the number in the tenth place 2 and look one place to the right for the rounding digit 8. Round up if this number is greater than or equal to 5 and round down if it is less than 5.

5 0
3 years ago
Consider the following statement: ∀ integers n, if n2 is even then n is even. Which of the following are equivalent ways of expr
Leni [432]

Answer:

B, D, E, F.

Step-by-step explanation:

In the statement, the square of an even integer is even. From the options provided, we have to select the ones that provide similar ways of expressing this.

Options B, D, E, F provided with the question and reproduced below convey the same statement in different ways:

B: Given any integer whose square is even, that integer is itself even.;

D: Any integer with an even square is even.;

E: If the square of an integer is even, then that integer is even and  

F: All even integers have even squares.

6 0
2 years ago
you are painting the outside of a jewery box, including the bottom. To find the surface area(S.A) of the jewlery box, you can us
Readme [11.4K]

Answer:

SA=10x^2+38x+30

Step-by-step explanation:

Please consider the complete question.

You are painting the outside of a jewelry box including the bottom. To find the surface area (S.A) of the jewelry box, you can use the formula SA=2wl+2lh+2wh, where L is length, W is width, and H is height. What is the surface area of the jewelry box in terms of x."

L = 2x+5

W= x

H= x+3

To find the surface area of box in terms of x, we will substitute the given values of length, width, and height in terms of x as:

SA=2x(2x+5)+2(2x+5)(x+3)+2x(x+3)

Now, we will use distributive property a(b+c)=ac+ac  to simplify our expression as:

SA=4x^2+10x+(4x+10)(x+3)+2x^2+6x

SA=4x^2+10x+4x(x+3)+10(x+3)+2x^2+6x

SA=4x^2+10x+4x^2+12x+10x+30+2x^2+6x

Let us combine like terms.

SA=4x^2+4x^2+2x^2+10x+12x+10x+6x+30

SA=10x^2+38x+30

Therefore, the surface area of the jewelry box in terms of x would be 10x^2+38x+30.

8 0
3 years ago
Calculate the following, leaving your answer in<br> standard form;<br> (3.5 x 104) x (4 x 105)
valkas [14]

Answer:

<h3>364×420=152880</h3><h3><em>stand</em><em>ard</em><em> </em><em>fo</em><em>rm</em><em>:</em><em> </em><em>1</em><em>.</em><em>5</em><em>2</em><em>×</em><em>1</em><em>0</em><em>^</em><em>5</em></h3>
3 0
3 years ago
Other questions:
  • Find the function y = f(t) passing through the point (0,12)
    13·1 answer
  • What is y squared times 9 to the 5th power
    8·1 answer
  • 7/6 - 4/3n = -3/2n + 2(n + 3/2)
    8·1 answer
  • Find the value of x. Round to the nearest tenth.
    14·1 answer
  • Help me please thank you
    7·1 answer
  • Help? Thanks in advance! Provide steps if possible.
    11·1 answer
  • Calculate the mean of this data set: 12, 35, 44, 74, 23, 49, 45, 18, 90, 56, 84,
    15·2 answers
  • The line plot shows the different lengths of nails in your toolbox. If you take all the nails
    8·1 answer
  • What form is the equation below written in?<br> y = (x - 2)2 - 9
    14·1 answer
  • Please help me I don’t know that pair.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!