1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IgorC [24]
2 years ago
6

Evaluate the limit

Mathematics
2 answers:
Digiron [165]2 years ago
6 0

We can transform the limand into a proper rational expression by substitution.

Let y = √x. Then as x approaches 4, y will approach √4 = 2. So

\displaystyle \lim_{x\to4}\frac{\sqrt x - \sqrt{3 \sqrt x - 2}}{x^2 - 16} = \lim_{y\to2} \frac{y - \sqrt{3y-2}}{y^4 - 16}

Now let z = √(3y - 2). Then as y approaches 2, z will approach √(3•2 - 2) = 2 as well. It follows that y = (z² + 2)/3, so that

\displaystyle \lim_{y\to2} \frac{y - \sqrt{3y-2}}{y^4-16} = \lim_{z\to2} \frac{\frac{z^2+2}3 - z}{\frac{(z^2+2)^4}{81}-16} \\\\ = \lim_{z\to2} \frac{27(z^2+2)-81z}{(z^2+2)^4 - 1296} \\\\ = 27 \lim_{z\to2} \frac{z^2 - 3z + 2}{z^8 + 8z^6 + 24z^4 + 32z^2 - 1280}

Plugging z = 2 into the denominator returns a value of 0, which means z - 2 divides z⁸ + 8z⁶ + 24z⁴ + 32z² - 1280 exactly. Polynomial division shows that

\dfrac{z^8 + 8z^6 + 24z^4 + 32z^2 - 1280}{z-2} \\\\ = z^7+2z^6+12z^5+24z^4+72z^3+144z^2+320z+640

and it's easy to see that the numerator is also divisible by z - 2, since

z^2 - 3z + 2 = (z - 1) (z - 2)

So, we can eliminate the factor of z - 2 and we're left with

\displaystyle 27 \lim_{z\to2} \frac{z^2 - 3z + 2}{z^8 + 8z^6 + 24z^4 + 32z^2 - 1280} = 27 \lim_{z\to2}\frac{z-1}{z^7+\cdots+640}

The remaining limand is continuous at z = 2, so we can evaluate the limit by direct substitution:

\displaystyle 27 \lim_{z\to2}\frac{z-1}{z^7+\cdots+640} = \frac{27}{3456} = \boxed{\frac1{128}}

wel2 years ago
3 0

We are given with a limit and we need to find it's value so let's start !!!!

{\quad \qquad \blacktriangleright \blacktriangleright \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}}

But , before starting , let's recall an identity which is the <em>main key</em> to answer this question

  • {\boxed{\bf{a^{2}-b^{2}=(a+b)(a-b)}}}

Consider The limit ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}}

Now as directly putting the limit will lead to <em>indeterminate form 0/0.</em> So , <em>Rationalizing</em> the <em>numerator</em> i.e multiplying both numerator and denominator by the <em>conjugate of numerator </em>

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}\times \dfrac{\sqrt{x}+\sqrt{3\sqrt{x}-2}}{\sqrt{x}+\sqrt{3\sqrt{x}-2}}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-\sqrt{3\sqrt{x}-2})(\sqrt{x}+\sqrt{3\sqrt{x}-2})}{(x^{2}-4^{2})(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Using the above algebraic identity ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x})^{2}-(\sqrt{3\sqrt{x}-2})^{2}}{(x-4)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-(3\sqrt{x}-2)}{(x-4)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}+2}{\{(\sqrt{x})^{2}-2^{2}\}(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , here we <em>need</em> to <em>eliminate (√x-2)</em> from the denominator somehow , or the limit will again be <em>indeterminate </em>,so if you think <em>carefully</em> as <em>I thought</em> after <em>seeing the question</em> i.e what if we <em>add 4 and subtract 4</em> in <em>numerator</em> ? So let's try !

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}-2+4-4}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(x-4)+2+4-3\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , using the same above identity ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)+6-3\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)+3(2-\sqrt{x})}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , take minus sign common in <em>numerator</em> from 2nd term , so that we can <em>take (√x-2) common</em> from both terms

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)-3(\sqrt{x}-2)}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , take<em> (√x-2) common</em> in numerator ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)\{(\sqrt{x}+2)-3\}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Cancelling the <em>radical</em> that makes our <em>limit again and again</em> <em>indeterminate</em> ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\cancel{(\sqrt{x}-2)}\{(\sqrt{x}+2)-3\}}{\cancel{(\sqrt{x}-2)}(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}+2-3)}{(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-1)}{(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , <em>putting the limit ;</em>

{:\implies \quad \sf \dfrac{\sqrt{4}-1}{(\sqrt{4}+2)(4+4)(\sqrt{4}+\sqrt{3\sqrt{4}-2})}}

{:\implies \quad \sf \dfrac{2-1}{(2+2)(4+4)(2+\sqrt{3\times 2-2})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+\sqrt{6-2})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+\sqrt{4})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+2)}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(4)}}

{:\implies \quad \sf \dfrac{1}{128}}

{:\implies \quad \bf \therefore \underline{\underline{\displaystyle \bf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}=\dfrac{1}{128}}}}

You might be interested in
Dave ran 3.52 miles in the same time
Lisa [10]
Subtract 3.52 - 2.44= 1.08 miles
8 0
3 years ago
What is the length of PQ? 3 units 4 units 6 units 7 units
Naddik [55]
 length of PQ = <span> length of SR = 4

answer is </span><span>4 units</span>
4 0
3 years ago
Read 2 more answers
4w-3(-5z+2w)-2z
Alekssandra [29.7K]
The answer is 13z - 18
6 0
3 years ago
Read 2 more answers
What is the value of 9(n+2)−5n for n=14?<br> 3<br> 9<br> 10<br> 19
Murrr4er [49]
If you want to know the value of a  function, you need to substitute the variable (here n) for the value:

so in the function

9(n+2)−5n

we substitute n with 14:

<span>9(14+2)−5*14

first calculate the inside of the bracket:

</span>
<span>9*16−5*14

9 times 16 is 144

144-5*14

5*14 is 70, so we have

144-70=74

so the answer should actually be 74!

Perhaps you mistyped the questions? can you check it again, please?

</span>
5 0
3 years ago
In the figure, a pair of parallel lines Is cut by a transversal. What kind of angle are angles A and C?
Sonbull [250]

Answer: Angles A and C are vertical angles.

Step-by-step explanation:

5 0
3 years ago
Other questions:
  • Write a percent between 25% and 50%.then write it as a decimal and as a fraction in simplest form
    10·1 answer
  • PLEASE HELP!!! I attached a snip of my question
    13·1 answer
  • I need to draw an open shape made up of one or more curves
    8·1 answer
  • A study investigated whether regular mammograms resulted in fewer deaths from breast cancer over a period of 20 years. Among 30,
    13·1 answer
  • Are the ratios 5:3 and 20:12 equivalent
    10·2 answers
  • Solve the following system of equations by graphing.<br> - 4x + 3y -12<br> - 2x + 3y -18
    11·1 answer
  • What is an outlier number?<br>​
    10·2 answers
  • Alright hear me out... why is the word dictionary in the dictionary? ಠ_ಠ
    5·2 answers
  • or Solve this system of equations by graphing. First graph the equations, and then type the solution. y= 7/4 x–3 y=x
    5·1 answer
  • What is 2pq = 10 when p squared q squared is 25.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!