1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IgorC [24]
2 years ago
6

Evaluate the limit

Mathematics
2 answers:
Digiron [165]2 years ago
6 0

We can transform the limand into a proper rational expression by substitution.

Let y = √x. Then as x approaches 4, y will approach √4 = 2. So

\displaystyle \lim_{x\to4}\frac{\sqrt x - \sqrt{3 \sqrt x - 2}}{x^2 - 16} = \lim_{y\to2} \frac{y - \sqrt{3y-2}}{y^4 - 16}

Now let z = √(3y - 2). Then as y approaches 2, z will approach √(3•2 - 2) = 2 as well. It follows that y = (z² + 2)/3, so that

\displaystyle \lim_{y\to2} \frac{y - \sqrt{3y-2}}{y^4-16} = \lim_{z\to2} \frac{\frac{z^2+2}3 - z}{\frac{(z^2+2)^4}{81}-16} \\\\ = \lim_{z\to2} \frac{27(z^2+2)-81z}{(z^2+2)^4 - 1296} \\\\ = 27 \lim_{z\to2} \frac{z^2 - 3z + 2}{z^8 + 8z^6 + 24z^4 + 32z^2 - 1280}

Plugging z = 2 into the denominator returns a value of 0, which means z - 2 divides z⁸ + 8z⁶ + 24z⁴ + 32z² - 1280 exactly. Polynomial division shows that

\dfrac{z^8 + 8z^6 + 24z^4 + 32z^2 - 1280}{z-2} \\\\ = z^7+2z^6+12z^5+24z^4+72z^3+144z^2+320z+640

and it's easy to see that the numerator is also divisible by z - 2, since

z^2 - 3z + 2 = (z - 1) (z - 2)

So, we can eliminate the factor of z - 2 and we're left with

\displaystyle 27 \lim_{z\to2} \frac{z^2 - 3z + 2}{z^8 + 8z^6 + 24z^4 + 32z^2 - 1280} = 27 \lim_{z\to2}\frac{z-1}{z^7+\cdots+640}

The remaining limand is continuous at z = 2, so we can evaluate the limit by direct substitution:

\displaystyle 27 \lim_{z\to2}\frac{z-1}{z^7+\cdots+640} = \frac{27}{3456} = \boxed{\frac1{128}}

wel2 years ago
3 0

We are given with a limit and we need to find it's value so let's start !!!!

{\quad \qquad \blacktriangleright \blacktriangleright \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}}

But , before starting , let's recall an identity which is the <em>main key</em> to answer this question

  • {\boxed{\bf{a^{2}-b^{2}=(a+b)(a-b)}}}

Consider The limit ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}}

Now as directly putting the limit will lead to <em>indeterminate form 0/0.</em> So , <em>Rationalizing</em> the <em>numerator</em> i.e multiplying both numerator and denominator by the <em>conjugate of numerator </em>

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}\times \dfrac{\sqrt{x}+\sqrt{3\sqrt{x}-2}}{\sqrt{x}+\sqrt{3\sqrt{x}-2}}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-\sqrt{3\sqrt{x}-2})(\sqrt{x}+\sqrt{3\sqrt{x}-2})}{(x^{2}-4^{2})(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Using the above algebraic identity ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x})^{2}-(\sqrt{3\sqrt{x}-2})^{2}}{(x-4)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-(3\sqrt{x}-2)}{(x-4)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}+2}{\{(\sqrt{x})^{2}-2^{2}\}(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , here we <em>need</em> to <em>eliminate (√x-2)</em> from the denominator somehow , or the limit will again be <em>indeterminate </em>,so if you think <em>carefully</em> as <em>I thought</em> after <em>seeing the question</em> i.e what if we <em>add 4 and subtract 4</em> in <em>numerator</em> ? So let's try !

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}-2+4-4}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(x-4)+2+4-3\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , using the same above identity ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)+6-3\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)+3(2-\sqrt{x})}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , take minus sign common in <em>numerator</em> from 2nd term , so that we can <em>take (√x-2) common</em> from both terms

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)-3(\sqrt{x}-2)}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , take<em> (√x-2) common</em> in numerator ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)\{(\sqrt{x}+2)-3\}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Cancelling the <em>radical</em> that makes our <em>limit again and again</em> <em>indeterminate</em> ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\cancel{(\sqrt{x}-2)}\{(\sqrt{x}+2)-3\}}{\cancel{(\sqrt{x}-2)}(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}+2-3)}{(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-1)}{(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , <em>putting the limit ;</em>

{:\implies \quad \sf \dfrac{\sqrt{4}-1}{(\sqrt{4}+2)(4+4)(\sqrt{4}+\sqrt{3\sqrt{4}-2})}}

{:\implies \quad \sf \dfrac{2-1}{(2+2)(4+4)(2+\sqrt{3\times 2-2})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+\sqrt{6-2})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+\sqrt{4})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+2)}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(4)}}

{:\implies \quad \sf \dfrac{1}{128}}

{:\implies \quad \bf \therefore \underline{\underline{\displaystyle \bf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}=\dfrac{1}{128}}}}

You might be interested in
Bonds that sell for more than face value are said to sell at a
Pie
I need to answer a question to I can do my hw. Sorry.
3 0
3 years ago
Read 2 more answers
6. Given the function f(x) = 7x determine the equation of a new function, g(x), that is reflected over
marusya05 [52]

Answer:

d. g(x) = -7x - 4

Step-by-step explanation:

If it is reflected over the x-axis, there is a negative sign to the x term.

There is a shift of 4 units, so it is -4.

3 0
3 years ago
What is the general form of the equation (x+2)^2+(y-5)^2=9
matrenka [14]

Answer:

4X+25Y=9

In order for me to summit this i need to wright more lol

4 0
3 years ago
Solve for x.<br><br> x<br> 18<br> = 10<br><br> A) 8 <br> B) 28 <br> C) 162 <br> D) 180
Novay_Z [31]

Answer:

D) 180

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
Lena drew a trapezoid on a coordinate grid. The table shows the coordinates of the four vertices.
kaheart [24]
The answer is B, 8 units.
3 0
4 years ago
Other questions:
  • How many unique ways are there to arrange the letters in the word reindeer
    7·1 answer
  • A triangular pyramid has a base area of 24 square meters and a height of 4 meters. What is the volume of the pyramid?
    8·1 answer
  • What number is a solution of the inequality 3&lt;3x-15
    8·2 answers
  • Gerald wants to buy a pair of jeans, polyester pants, or cotton pants for his upcoming camping trip. The cost is similar for eac
    13·1 answer
  • Bethany earned a total of $175 for babysitting over her summer break. Which expression shows how much money Bethany earned each
    8·2 answers
  • Solve for x: x3 = 512 Your answer may be a whole number or a fraction.
    10·1 answer
  • Plsplspls help 22 points and brainly ONLY ANSWER IF YK THE ANSWER TY!! :)
    12·1 answer
  • 3 to the power 2x+3 is subtracted by 9 which is equal to 2 times 9 to the power x+1 and is subtrcted by 6
    13·1 answer
  • *50 Points* Please help
    9·1 answer
  • 10. <br> Which is the graph of the exponential function y = 9(3)x?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!