Answer:
no
Step-by-step explanation:
The prices are inconsistent, so there is no unique price that can be set for either an apple or an orange that will give the total prices indicated.
__
The first relation can be written as ...
$10 = 4A +4O
$10 = 4(A +O) . . . . factor out 4
$2.50 = A +O . . . . divide by 4
The second relation can be written as ...
$12 = 6A +6O
$12 = 6(A +O) . . . . factor out 6
$2 = A +O . . . . . . . divide by 6
These two relations give different prices for 1 apple and 1 orange. There is no price that can be set for either fruit that will give this result.
No unique prices can be assigned.
Solve your equation step-by-step.
x2+4x+4=0
Factor left side of equation.
(x+2)(x+2)=0
Set factors equal to 0.
x+2=0
or
x+2=0
x=−2
It’s A! hope this helps you out!
Answer:
<em><u>T</u></em><em><u>H</u></em><em><u>E</u></em><em><u> </u></em><em><u>C</u></em><em><u>O</u></em><em><u>R</u></em><em><u>R</u></em><em><u>E</u></em><em><u>C</u></em><em><u>T</u></em><em><u> </u></em><em><u>A</u></em><em><u>N</u></em><em><u>S</u></em><em><u>E</u></em><em><u>R</u></em><em><u> </u></em><em><u>O</u></em><em><u>F</u></em><em><u> </u></em><em><u>T</u></em><em><u>H</u></em><em><u>I</u></em><em><u>S</u></em><em><u> </u></em><em><u>Q</u></em><em><u>U</u></em><em><u>E</u></em><em><u>S</u></em><em><u>T</u></em><em><u>I</u></em><em><u>O</u></em><em><u>N</u></em><em><u> </u></em><em><u>I</u></em><em><u>S</u></em><em><u> </u></em><em><u>5</u></em><em><u>.</u></em>
Step-by-step explanation:
Here,
a23=6
a12=5
a32=6
Now,
a23+a12-a32
=6+5-6
=5