Answer:
1. 
2. not completely sure but i think its 
3.x
=
2
i
√
5
,
−
2
i
√
5
4.x
=
−
9
±
√
73
/2
5. Im not sure...
☀️☀️☀️☀️☀️☀️Hope This Helps☀️☀️☀️☀️☀️☀️
----------------------------------------------------------------------------------------
Formula
----------------------------------------------------------------------------------------
Area of rectangle = Length x Width
----------------------------------------------------------------------------------------
Find Length
----------------------------------------------------------------------------------------
357 = Length x 17
----------------------------------------------------------------------------------------
Divide by 17 through
----------------------------------------------------------------------------------------
Length = 357 ÷ 7
Length = 51 inches
----------------------------------------------------------------------------------------
Answer: The length of the rectangle is 51 inches
----------------------------------------------------------------------------------------
Answer:
height of the Eiffel tower ≈ 300.0 m(nearest tenth of a meter)
Step-by-step explanation:
The triangle TDE is not a right angle triangle. Angle TDE can be gotten by subtracting 63° from 180°. Angle on a straight line is 180°. Therefore, 180° - 63° = 117
°.
angle TDE = 117°
angle DTE = 180° - 117° - 31° = 32°
DE = 346.4 m
Side TD can be find using sine law
346.4/sin 32° = TD/sin 31°
cross multiply
346.4 × 0.51503807491 = 0.52991926423TD
178.409189149 = 0.52991926423TD
divide both sides by 0.52991926423
TD = 178.409189149/0.52991926423
TD = 336.672397461
TD ≈ 336.67 m
The side TD becomes the hypotenuse of the new right angle triangle formed with the height of the Eiffel tower.
Using sin ratio
sin 63° = opposite/hypotenuse
sin 63° = h/336.67
cross multiply
h = 336.67 × 0.89100652418
h = 299.975166498
height of the Eiffel tower ≈ 300.0 m(nearest tenth of a meter)
5*4 equals 20 so her wall is 20 square meters
Given that one litre can cover 10 square meters, she needs 2 litres of paint to cover the wall