The microbes present in the experiment were:
S. cerevisiae
S. epidermis
A way of categorizing microbes is according to the environment that they need to live in. In other words, we can classify them as isotonic, halotolerant and halophile.
If we put these two microbes in solutions of increasing concentrations, 1%, 7% and 15%, we will see that:
- S. cerevisiae only grows when it is in a 1% solution.
- S. epidermis only grows when it is in a 1% and 7% solution.
In conclusion, S.cerevisiae prefers an isotonic environment. S. epidermis is halotolerant since it can grow in a more hypertonic environment. As none of them grows in a highly hypertonic solution, neither of them are halophile.
Learn more at:
brainly.com/question/12165361
Pollen can be carried to multiple flowering plants by animals called pollinators, which can be bees, birds, spiders, or even small mammals!
Answer:
The correct choice is ''ion electrochemical gradients''.
Diffusion of ions across membranes through specific ion channels is driven by <u>ion electrochemical gradients</u>.
Explanation:
An electrochemical gradient can be considered as that electrical (electrostatic pressure) and chemical (diffusion) force that determine the movement of molecules and ions across the membrane. This electrochemical gradient, in addition to causing movement of substances through cell membranes, is also a type of potential energy available for the performance of different cellular activities, potential energy called membrane potential.
<h2>CRISPR/Cas9</h2>
Explanation:
CRISPR can be used to reintroduce dystrophin back into the KO mouse
- CRISPR stands for Clustered Regularly Interspaced Short Palindromic Repeats and is used to for gene editing
- CRISPR/Cas-mediated genome editing has been shown to permanently correct DMD mutations and restore dystrophin function in mouse models
- Germline editing by injecting zygotes with CRISPR/Cas9 editing component was first done in mdx mice by correcting the mutated exon 23
- Postnatal editing of mdx mice was then achieved using recombinant adeno-associated virus to deliver CRISPR/Cas9 genome editing components and correct the dystrophin gene by skipping or deleting the mutated exon 23 in vivo
- Germline and postnatal CRISPR/Cas9 editing approaches both successfully restored dystrophin function in the mice and same technique can be used for KO mouse model
Living things obtain and use energy so alive?