Answer:
Step-by-step explanation:
The sequence shown matches that of a geometric sequence of radius 4. To prove it, divide the term and check that
Then the formula that represents this sequence is:
Where is the first term of the series = 2 and is the radius of convergence = 4.
Then the equation is:
Subtract 3 from both sides so that the equation becomes -2x^2 + 5x - 13 = 0.
To find the solutions to this equation, we can apply the quadratic formula. This quadratic formula solves equations of the form ax^2 + bx + c = 0
x = [ -b ± √(b^2 - 4ac) ] / (2a)
x = [ -5 ± √((5)^2 - 4(-2)(-13)) ] / ( 2(-2) )
x = [-5 ± √(25 - (104) ) ] / ( -4 )
x = [-5 ± √(-79) ] / ( -4)
Since √-79 is nonreal, the answer to this question is that there are no real solutions.
Answer:
66.46
Step-by-step explanation:
Answer:
14 & 16
Step-by-step explanation:
30÷2=15
15+15=30, so we can make the conclusion...
14+16=30
Answer:
Step-by-step explanation:
Given is a table showing the weights, in hundreds of pounds, for six selected cars. Also shown is the corresponding fuel efficiency, in miles per gallon (mpg), for the car in city driving.
Weight Fuel eff. x^2 xy y^2
X Y
28 20 784 560 400
3 22 9 66 484
35 19 1225 665 361
32 22 1024 704 484
30 23 900 690 529
29 21 841 609 441
Mean 26.16666667 21.16666667 797.1666667 549 449.8333333
Variance 112.4722222 1.805555556
Covariance -553.8611111
r -0.341120235
Correlaton coefficient =cov (xy)/S_x S_y
Covariance (x,y) = E(xy)-E(x)E(y)
The correlation coefficient between the weight of a car and the fuel efficiency is -0.341