Answer:
-0.5
Step-by-step explanation:
Answer:
Where is the numbers dude? LOL
Step-by-step explanation:
Answer:
The approximate percentage of SAT scores that are less than 865 is 16%.
Step-by-step explanation:
The Empirical Rule states that, for a normally distributed random variable:
Approximately 68% of the measures are within 1 standard deviation of the mean.
Approximately 95% of the measures are within 2 standard deviations of the mean.
Approximately 99.7% of the measures are within 3 standard deviations of the mean.
In this problem, we have that:
Mean of 1060, standard deviation of 195.
Empirical Rule to estimate the approximate percentage of SAT scores that are less than 865.
865 = 1060 - 195
So 865 is one standard deviation below the mean.
Approximately 68% of the measures are within 1 standard deviation of the mean, so approximately 100 - 68 = 32% are more than 1 standard deviation from the mean. The normal distribution is symmetric, which means that approximately 32/2 = 16% are more than 1 standard deviation below the mean and approximately 16% are more than 1 standard deviation above the mean. So
The approximate percentage of SAT scores that are less than 865 is 16%.
Answer: 19.63
Step-by-step explanation:
A = pir^2 , pi*2.5^2 = 19.63
Answer:
Probability that deliberation will last between 12 and 15 hours is 0.1725.
Step-by-step explanation:
We are given that a recent study showed that the length of time that juries deliberate on a verdict for civil trials is normally distributed with a mean equal to 12.56 hours with a standard deviation of 6.7 hours.
<em>Let X = length of time that juries deliberate on a verdict for civil trials</em>
So, X ~ N(
)
The z score probability distribution is given by;
Z =
~ N(0,1)
where,
= mean time = 12.56 hours
= standard deviation = 6.7 hours
So, Probability that deliberation will last between 12 and 15 hours is given by = P(12 hours < X < 15 hours) = P(X < 15) - P(X
12)
P(X < 15) = P(
<
) = P(Z < 0.36) = 0.64058
P(X
12) = P(
) = P(Z
-0.08) = 1 - P(Z < 0.08)
= 1 - 0.53188 = 0.46812
<em>Therefore, P(12 hours < X < 15 hours) = 0.64058 - 0.46812 = 0.1725</em>
Hence, probability that deliberation will last between 12 and 15 hours is 0.1725.