It will take exactly 4 years for these trees to be the same height
Step-by-step explanation:
A gardener is planting two types of trees:
- Type A is 3 feet tall and grows at a rate of 7 inches per year
- Type B is 5 feet tall and grows at a rate of 1 inches per year
We need to find in how many years it will take for these trees to be the
same height
Assume that it will take x years for these trees to be the same height
The height of a tree = initial height + rate of grow × number of years
Type A:
∵ The initial height = 3 feet
∵ 1 foot = 12 inches
∴ The initial height = 3 × 12 = 36 inches
∵ The rate of grows = 7 inches per year
∵ The number of year = x
∴
= 36 + (7) x
∴
= 36 + 7 x
Type B:
∵ The initial height = 5 feet
∴ The initial height = 5 × 12 = 60 inches
∵ The rate of grows = 1 inches per year
∵ The number of year = x
∴
= 60 + (1) x
∴
= 60 + x
Equate
and 
∴ 36 + 7 x = 60 + x
- Subtract x from both sides
∴ 36 + 6 x = 60
- Subtract 36 from both sides
∴ 6 x = 24
- Divide both sides by 6
∴ x = 4
∴ The two trees will be in the same height in 4 years
It will take exactly 4 years for these trees to be the same height
Learn more:
You can learn more about the rate in brainly.com/question/10712420
#LearnwithBrainly
Answer:
3x = 15
x = 5
Step-by-step explanation:
Answer:

Step-by-step explanation:
The rate of change of the function f(x) from point
to point
can be calculated using formula

Given

From the graph of the function

So, the rate of change is

The correct answer is points