<h3>
Answer: C = 1.06P</h3>
==========================================================
Explanation:
The sales tax is 6% of the price P
6% of P = 0.06P
Add on the original cost P to get P+0.06P = (1+0.06)P = 1.06P
The 1.06 indicates the final after tax cost is 106% of the original price.
You can think of it like 100% + 6% = 106% = 1.06
So that's how we end up with C = 1.06P
-----------
An example using actual numbers:
Let P = $100 be the initial cost before tax
6% of P = 0.06*P = 0.06*100 = 6 dollars is the tax
100+6 = 106 is the final cost
Note how C = 1.06P = 1.06*100 = 106
Answer:
35 cm
Step-by-step explanation:
volume of cylinder = πr²h
πr²h = 1058.75π
Divide both sides by π.
r²h = 1058.75 cm³
r = 5.5 cm
Substitute r² with (5.5 cm)².
(5.5 cm)²h = 1058.75 cm³
h = 1058.75/30.25 cm
h = 35 cm
Start on the left side.<span><span><span>−<span>cot<span>(t)</span></span></span>+<span><span>sin<span>(t)</span></span><span>1<span>−<span>cos<span>(t)</span></span></span></span></span></span><span><span>-<span>cott</span></span>+<span><span>sint</span><span>1<span>-<span>cost</span></span></span></span></span></span>Multiply <span><span><span>sin<span>(t)</span></span><span>1<span>−<span>cos<span>(t)</span></span></span></span></span><span><span>sint</span><span>1<span>-<span>cost</span></span></span></span></span> by <span><span><span>1+<span>cos<span>(t)</span></span></span><span>1+<span>cos<span>(t)</span></span></span></span><span><span>1+<span>cost</span></span><span>1+<span>cost</span></span></span></span>.<span><span><span>−<span>cot<span>(t)</span></span></span>+<span><span><span>sin<span>(t)</span></span><span>1<span>−<span>cos<span>(t)</span></span></span></span></span><span><span>1+<span>cos<span>(t)</span></span></span><span>1+<span>cos<span>(t)</span></span></span></span></span></span><span><span>-<span>cott</span></span>+<span><span><span>sint</span><span>1<span>-<span>cost</span></span></span></span><span><span>1+<span>cost</span></span><span>1+<span>cost</span></span></span></span></span></span>Combine.<span><span>−<span>cot<span>(t)</span></span></span>+<span><span><span>sin<span>(t)</span></span><span>(<span>1+<span>cos<span>(t)</span></span></span>)</span></span><span>(<span>1<span>−<span>cos(t</span></span></span></span></span></span>−<span><span>cot<span>(t)</span></span>+<span><span><span>sin<span>(t)</span></span>+<span><span>sin<span>(t)</span></span><span>cos<span>(t)</span></span></span></span><span><span>(<span>1<span>−<span>cos<span>(t)</span></span></span></span>)</span><span>(<span>1+<span>cos<span>(t)</span></span></span>)</span></span></span></span><span>-<span>cott</span></span>+<span><span><span>sint</span>+<span><span>sint</span><span>cost</span></span></span><span><span>1<span>-<span>cost</span></span></span><span>1+<span>cost</span></span></span></span><span><span>))</span><span>(<span>1+<span>cos<span>(t)</span></span></span>)</span></span>−
<span><span><span>cot<span>(t)</span></span>+<span><span><span>sin<span>(t)</span></span>+<span><span>sin<span>(t)</span></span><span>cos<span>(t)</span></span></span></span><span>1<span>−<span>cos2</span><span>(t)</span></span></span></span></span><span><span>-<span>cott</span></span>+<span><span><span>sint</span>+<span><span>sint</span><span>cost</span></span></span><span>1<span>-<span>cos2</span>t</span></span></span></span></span>Apply pythagorean identity.<span><span><span>−<span>cot<span>(t)</span></span></span>+<span><span><span>sin<span>(t)</span></span>+<span><span>sin<span>(t)</span></span><span>cos<span>(t)</span></span></span></span><span><span>sin2</span><span>(t)</span></span></span></span><span><span>-<span>cott</span></span>+<span><span><span>sint</span>+<span><span>sint</span><span>cost</span></span></span><span><span>sin2</span>t</span></span></span></span>Write <span><span>cot<span>(t)</span></span><span>cott</span></span> in sines and cosines using the quotient identity.<span><span><span>−<span><span>cos<span>(t)</span></span><span>sin<span>(t)</span></span></span></span>+<span><span><span>sin<span>(t)</span></span>+<span><span>sin<span>(t)</span></span><span>cos<span>(t)</span></span></span></span><span><span>sin2</span><span>(t)</span></span></span></span><span><span>-<span><span>cost</span><span>sint</span></span></span>+<span><span><span>sint</span>+<span><span>sint</span><span>cost</span></span></span><span><span>sin2</span>t</span></span></span></span>Simplify.1<span><span>sin<span>(t)</span></span><span>1<span>sint</span></span></span>Rewrite <span><span>1<span>sin<span>(t)</span></span></span><span>1<span>sint</span></span></span> as <span><span>csc<span>(t)</span></span><span>csct</span></span>.<span><span>csc<span>(t)</span></span><span>csct</span></span>Because the two sides have been shown to be equivalent, the equation is an identity.<span><span><span><span>−<span>cot<span>(t)</span></span></span>+<span><span>sin<span>(t)</span></span><span>1<span>−<span>cos<span>(t)</span></span></span></span></span></span>=<span>csc<span>(t)</span></span></span><span><span><span>-<span>cott</span></span>+<span><span>sint</span><span>1<span>-<span>cost</span></span></span></span></span>=<span>csct</span></span></span> is an <span>identity
</span>