The solution is B = 43
Step-by-step explanation:
Simplify and solve for the unknown for 5(B + 3) = 4(B - 7) + 2B
- Simplify each side
- Add the like terms in each side if need
- Separate the unknown in one side and the numerical term in the other side to find the value of the unknown
∵ 5(B + 3) = 4(B - 7) + 2B
- Multiply the bracket (B + 3) by 5 in the left hand side and multiply
the bracket (B - 7) by 4 in the right hand side
∵ 5(B + 3 ) = 5(B) + 5(3) = 5B + 15
∵ 4(B - 7) = 4(B) - 4(7) = 4B - 28
∴ 5B + 15 = 4B - 28 + 2B
- Add the like terms in the right hand side
∵ 4B + 2B = 6B
∴ 5B + 15 = 6B - 28
- Add 28 to both sides
∴ 5B + 43 = 6B
- Subtract 5B from both sides
∴ 43 = B
- Switch the two sides
∴ B = 43
To check the answer substitute the value of B in each side if the two sides are equal then the solution is right
The left hand side
∵ 5(43 + 3) = 5(46) = 230
The right hand side
∵ 4(43 - 7) + 2(43) = 4(36) + 86 = 144 + 86 = 230
∴ L.H.S = R.H.S
∴ The solution B = 43 is right
The solution is B = 43
Learn more:
You can learn more about the solution of an equation in brainly.com/question/11229113
#LearnwithBrainly
Answer:
197
Step-by-step explanation:
Divide 1640 by 25
1640/25=65
Then multiply 65 and 3
65x3=197
Step-by-step explanation:
In many parts of the world, the year is made up of four different seasons. These seasons are spring, summer, fall, and winter. Each has its own pattern of weather and varying hours of sunlight during the days. The northern and southern parts of Earth have different seasons at the same time.
we know that
<u>The triangle inequality theorem</u> states that the sum of the lengths of any two sides of a triangle is greater than the length of the third side
so
Let
a,b,c------> the length sides of a triangle
The theorem states that three conditions must be met
<u>case 1)</u>

<u>case 2)</u>

<u>case3)</u>

therefore
<u>the answer is the option</u>
B. The sum of the lengths of any two sides of a triangle is greater than the length of the third side.
Answer:
the sum is 5
Step-by-step explanation: