1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leviafan [203]
3 years ago
7

5. Steve wants to buy a new stereo. The city that he lives

Mathematics
1 answer:
Rudiy273 years ago
3 0

Answer:

12.50

Step-by-step explanation:

You might be interested in
What is the area of a parallelogram with a base of 0.56 cm and a height of 0.33 cm (to the nearest hundredths)? A) 0.18 cm2 B) 0
valentinak56 [21]

Answer: A) 0.18 cm²

Step-by-step explanation:

To calculate the area of a parallelogram you must apply the formula shown below:

A=b*h

Where b is the base and h is the height of the parallelogram.

You know the values of the base and the value of the height.

Therefore, when you susbstitute these values into the equation shown above, you obtain the following result:

A=0.56*0.33cm=0.18cm^{2}

6 0
3 years ago
Read 2 more answers
I NEED HELP ASAP! In a magic square, the sum of the numbers in each row, column, and diagonal is the same. Write and solve equat
Trava [24]

Answer:

a=22,\\b=31,\\c=13

Step-by-step explanation:

When choosing equations to write, make sure you choose a pair that allow you to isolate a variable and solve for it.

Sample solution:

a+25+28=16+25+34,\\\\a+28=16+34,\\a+28=50,\\a=\boxed{22}

16+b+28=16+25+34,\\b+44=75,\\b=\boxed{31}

34+c+28=16+25+34,\\c+28=41,\\c=\boxed{13}

8 0
2 years ago
If anyone knows about definite integrals for calculus then please I request help! I
kicyunya [14]

Answer:

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 4x^{-2}
  2. [<em>u</em>] Differentiate [Basic Power Rule, Derivative Properties]:                       \displaystyle du = \frac{-8}{x^3} \ dx
  3. [Bounds] Switch:                                                                                           \displaystyle \left \{ {{x = 9 ,\ u = 4(9)^{-2} = \frac{4}{81}} \atop {x = 5 ,\ u = 4(5)^{-2} = \frac{4}{25}}} \right.

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^9_5 {\frac{-8}{x^3}e^\big{4x^{-2}}} \, dx
  2. [Integral] U-Substitution:                                                                              \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^{\frac{4}{81}}_{\frac{4}{25}} {e^\big{u}} \, du
  3. [Integral] Exponential Integration:                                                               \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}(e^\big{u}) \bigg| \limits^{\frac{4}{81}}_{\frac{4}{25}}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8} \bigg( e^\Big{\frac{4}{81}} - e^\Big{\frac{4}{25}} \bigg)
  5. Simplify:                                                                                                         \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

4 0
3 years ago
Juan and his little brother Miquel ran around a circular track together. Juan ran on the inner track, which has a radius of 30 f
MArishka [77]

Answer:

he would have had to run 20 more feet then Juan

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
PLEASE HELLP ASAP!!! Will Mark Braniliest!!!
Tasya [4]

Answer:

1. 15

2. 17

ur welcome :)000))

4 0
3 years ago
Other questions:
  • Given: ΔABC Prove: The three medians of ΔABC intersect at a common point. When written in the correct order, the two-column proo
    12·1 answer
  • I don’t know how to do it
    6·1 answer
  • What is the quotient of 3/5 and 1/10<br> A.1/6<br> B.1/3<br> C.3<br> D.6
    7·2 answers
  • As a team leader, Lisa shows compassion to her subordinates and respects them. She gives credit to her followers for their achie
    10·1 answer
  • Please help
    6·1 answer
  • The box plots shown represent the average mileage of two different types of cars. Use the box plots to compare the data sets. Dr
    12·2 answers
  • Write the statement "dividing the sum of x and 5 by 6 is 3 more than x" as a mathematical equation.​
    10·1 answer
  • What is the axis of symmetry of g(x)=-3(x—2)^2+1
    8·1 answer
  • Solve for x and show all work thanks:)
    13·1 answer
  • What is the answer to x/3+8=-2
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!