1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Genrish500 [490]
2 years ago
6

." id="TexFormula1" title="\left \{ {{a^2 -2a-b^2=0} \atop {2b+2ab=0}} \right." alt="\left \{ {{a^2 -2a-b^2=0} \atop {2b+2ab=0}} \right." align="absmiddle" class="latex-formula">
Help me solve this plsss
Mathematics
1 answer:
oksian1 [2.3K]2 years ago
8 0

Given :-

  • a² - 2a - b² = 0
  • 2b + 2ab = 0

To find :-

  • Value of a and b .

Solution :-

<u>Taking</u><u> </u><u>second</u><u> </u><u>equation</u><u>:</u><u>-</u>

  • 2b + 2ab = 0
  • 2b ( 1 + a ) = 0
  • 2b = 0 or (1+a) = 0
  • b = 0 , a = -1

<u>Substitute</u><u> </u><u>in </u><u>first </u><u>equation</u><u> </u><u>:</u><u>-</u><u> </u>

  • a² - 2a - b² = 0

<u>When </u><u>b </u><u>=</u><u> </u><u>0</u><u> </u><u>,</u>

  • a² - 2a - 0² = 0
  • a² - a = 0
  • a( a -1) =0
  • a = 0 , 1

<u>When </u><u>a </u><u>=</u><u> </u><u>-</u><u>1</u><u> </u><u>,</u>

  • (-1)² - 2*(-1) - b² = 0
  • 1 + 2 - b² = 0
  • b² = 3
  • b = ±√3

<u>Answer </u><u>:</u><u>-</u><u> </u>

  • a = 0,1 ; b = 0
  • a = -1 , b = ±√3
You might be interested in
Find all the solutions for the equation:
Contact [7]

2y^2\,\mathrm dx-(x+y)^2\,\mathrm dy=0

Divide both sides by x^2\,\mathrm dx to get

2\left(\dfrac yx\right)^2-\left(1+\dfrac yx\right)^2\dfrac{\mathrm dy}{\mathrm dx}=0

\dfrac{\mathrm dy}{\mathrm dx}=\dfrac{2\left(\frac yx\right)^2}{\left(1+\frac yx\right)^2}

Substitute v(x)=\dfrac{y(x)}x, so that \dfrac{\mathrm dv(x)}{\mathrm dx}=\dfrac{x\frac{\mathrm dy(x)}{\mathrm dx}-y(x)}{x^2}. Then

x\dfrac{\mathrm dv}{\mathrm dx}+v=\dfrac{2v^2}{(1+v)^2}

x\dfrac{\mathrm dv}{\mathrm dx}=\dfrac{2v^2-v(1+v)^2}{(1+v)^2}

x\dfrac{\mathrm dv}{\mathrm dx}=-\dfrac{v(1+v^2)}{(1+v)^2}

The remaining ODE is separable. Separating the variables gives

\dfrac{(1+v)^2}{v(1+v^2)}\,\mathrm dv=-\dfrac{\mathrm dx}x

Integrate both sides. On the left, split up the integrand into partial fractions.

\dfrac{(1+v)^2}{v(1+v^2)}=\dfrac{v^2+2v+1}{v(v^2+1)}=\dfrac av+\dfrac{bv+c}{v^2+1}

\implies v^2+2v+1=a(v^2+1)+(bv+c)v

\implies v^2+2v+1=(a+b)v^2+cv+a

\implies a=1,b=0,c=2

Then

\displaystyle\int\frac{(1+v)^2}{v(1+v^2)}\,\mathrm dv=\int\left(\frac1v+\frac2{v^2+1}\right)\,\mathrm dv=\ln|v|+2\tan^{-1}v

On the right, we have

\displaystyle-\int\frac{\mathrm dx}x=-\ln|x|+C

Solving for v(x) explicitly is unlikely to succeed, so we leave the solution in implicit form,

\ln|v(x)|+2\tan^{-1}v(x)=-\ln|x|+C

and finally solve in terms of y(x) by replacing v(x)=\dfrac{y(x)}x:

\ln\left|\frac{y(x)}x\right|+2\tan^{-1}\dfrac{y(x)}x=-\ln|x|+C

\ln|y(x)|-\ln|x|+2\tan^{-1}\dfrac{y(x)}x=-\ln|x|+C

\boxed{\ln|y(x)|+2\tan^{-1}\dfrac{y(x)}x=C}

7 0
3 years ago
70 POINTS PLEASE HELP!! Use the two equations: f (x) =x^2 and g (x) =4x+1 to determine the solutions to the following function o
bagirrra123 [75]
<h2><em><u>My</u></em><em><u> </u></em><em><u>equation</u></em><em><u> </u></em></h2>

<em>f</em><em>(</em><em>x</em><em>=</em><em>x</em><em>^</em><em>2</em><em> </em><em>is</em><em> </em><em>30</em><em> </em><em>and</em><em> </em><em>g</em><em>(</em><em>x</em><em>)</em><em> </em><em>=</em><em>4 1</em><em> </em><em> </em><em>is</em><em> </em><em>50</em><em>.</em><em>1</em>

<em>Hope</em><em> </em><em>it</em><em> </em><em>helps</em><em> </em><em>#brainliestbunch</em><em> </em><em>=</em><em>)</em><em> </em>

6 0
3 years ago
A rectangle with a length of L and a width of W has a diagonal of 10 inches. Express the perimeter P of the rectangle as a funct
KatRina [158]
<h2>Answer:</h2>

The expression which represents the perimeter P of the rectangle as a function of L is:

          Perimeter=2(L+\sqrt{100-L^2})

<h2>Step-by-step explanation:</h2>

The length and width of a rectangle are denoted by L and W respectively.

Also the diagonal of a rectangle is: 10 inches.

We know that the diagonal of a rectangle in terms of L and W are given by:

10=\sqrt{L^2+W^2}

( Since, the diagonal of a rectangle act as a hypotenuse of the right angled triangle and we use the Pythagorean Theorem )

Hence, we have:

10^2=L^2+W^2\\\\i.e.\\\\W^2=100-L^2\\\\W=\pm \sqrt{100-L^2}

But we know that width can't be negative. It has to be greater than 0.

Hence, we have:

W=\sqrt{100-L^2}

Now, we know that the Perimeter of a rectangle is given by:

Perimeter=2(L+W)

Here we have:

Perimeter=2(L+\sqrt{100-L^2})

7 0
3 years ago
K= 1/2mv^2<br> Solve for V
jeyben [28]

Hi there!

v = ±\sqrt{\frac{2K}{m} }

- - - - - - - - -

K = 1/2mv²

Isolate for the variable "v". We can begin by dividing both sides by 1/2. (Multiply by the reciprocal, or 2):

2 · K = 2 · (1/2mv²)

2K = mv²

Continue isolating by dividing both sides by "m":

2K / m = v²

Take the square root of both sides. Remember that the solution can either be positive or negative since there are positive and negative roots.

v = ±\sqrt{\frac{2K}{m} }

7 0
3 years ago
Read 2 more answers
Help me with this plz
Paul [167]
1) 7000+300+10+3
2) 900,000+90,000+400+40+6
3) 600+80+2
4)30,000+7000+900+10+1
5)3,000,000+900,000+40,000+1,000+400+70+7
6)8000+400+70+4
7)700+70+2
8)30,000+7000+200+80+2
9)700,000+30,000+5,000+800+10+1
10)40,000+6000+400+40+9
11)5000+8000+70+2
12)5,000,000+700,000+50,000+8,000+900+40+5
13)5,000,000+900,000+90,000+8,000+800+90+0
14)300+70+7
15)300,000+20,000+3,000+200+40+8
5 0
3 years ago
Read 2 more answers
Other questions:
  • The measure of angle 1 is one fourth of the measure of angle 3, what is the measure of angle 1?
    8·1 answer
  • 0.14 repeating decimals
    12·1 answer
  • To swing. Here, ttt is entered in radians. P(t) = -5\cos\left(2\pi t\right) + 5P(t)=−5cos(2πt)+5P, left parenthesis, t, right pa
    9·1 answer
  • AB and BC are tangent to circle D. Find x if AB = 2x + 9 and BC = 3x + 6. Find x.
    8·2 answers
  • Annie is 3years older than james use j to represent james age
    6·2 answers
  • What is the value of x
    14·1 answer
  • Find the GCF of the two numbers, and rewrite the sum of the two numbers using the distributive property.
    9·1 answer
  • What number do you need to add to -11 to get to0?
    15·2 answers
  • Please answer ASAP!<br><br> Which proportional relationship has the greatest rate of change?
    6·1 answer
  • 3ft 2ft xft what is the answer it's really hard
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!