1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alekssr [168]
3 years ago
10

Q). Show that: tan 75° + cot 75° = 4.​

Mathematics
2 answers:
elena-s [515]3 years ago
6 0

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:tan75\degree  + cot75\degree

Consider

\rm :\longmapsto\:tan75\degree

\rm \:  =  \: tan(45\degree  + 30\degree )

\rm \:  =  \: \dfrac{tan45\degree  + tan30\degree }{1 - tan45\degree  \times tan30\degree }

\rm \:  =  \: \dfrac{1 + \dfrac{1}{ \sqrt{3} } }{1 - 1 \times \dfrac{1}{ \sqrt{3} } }

\rm \:  =  \: \dfrac{1 + \dfrac{1}{ \sqrt{3} } }{1 - \dfrac{1}{ \sqrt{3} } }

\rm \:  =  \: \dfrac{ \sqrt{3} + 1 }{ \sqrt{3}  - 1}

On rationalizing the denominator, we get

\rm \:  =  \: \dfrac{ \sqrt{3} + 1 }{ \sqrt{3}  - 1} \times \dfrac{ \sqrt{3} + 1 }{ \sqrt{3} + 1 }

\rm \:  =  \: \dfrac{ {( \sqrt{3}  + 1)}^{2} }{ {( \sqrt{3}) }^{2} -  {(1)}^{2}  }

\rm \:  =  \: \dfrac{3 + 1 + 2 \sqrt{3} }{3 - 1}

\rm \:  =  \: \dfrac{4+ 2 \sqrt{3} }{2}

\rm \:  =  \: \dfrac{2(2+  \sqrt{3} )}{2}

\rm \:  =  \: 2 +  \sqrt{3}

\rm\implies \:\boxed{\tt{ tan75\degree  = 2 +  \sqrt{3} \: }}

Now,

\rm :\longmapsto\:cot75\degree

\rm \:  =  \: \dfrac{1}{tan75\degree }

\rm \:  =  \: \dfrac{1}{2 +  \sqrt{3} }

On rationalizing the denominator, we get

\rm \:  =  \: \dfrac{1}{2 +  \sqrt{3} }  \times \dfrac{2 -  \sqrt{3} }{2 -  \sqrt{3} }

\rm \:  =  \: \dfrac{2 -  \sqrt{3} }{ {(2)}^{2}  -  {( \sqrt{3}) }^{2} }

\rm \:  =  \: \dfrac{2 -  \sqrt{3} }{4 - 3}

\rm \:  =  \: 2 -  \sqrt{3}

\bf\implies \:\boxed{\tt{ cot75\degree  = 2 -  \sqrt{3} \: }}

Now, Consider

\rm :\longmapsto\:tan75\degree  + cot75\degree

\rm \:  =  \: 2 +  \sqrt{3} + 2 -  \sqrt{3}

\rm \:  =  \: 4

Hence,

\rm\implies \:\boxed{\tt{ tan75\degree  + cot75\degree  = 4 \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

<h2><u>Alternative Method</u></h2>

\rm :\longmapsto\:tan75\degree  + cot75\degree

\rm \:  =  \: tan75\degree  +  \dfrac{1}{tan75\degree }

\rm \:  =  \: \dfrac{ {tan}^{2}75\degree  +  1}{tan75\degree }

\rm \:  =  \: \dfrac{1}{\dfrac{tan75\degree }{1 +  {tan}^{2} 75\degree } }

\rm \:  =  \: \dfrac{2}{\dfrac{2tan75\degree }{1 +  {tan}^{2} 75\degree } }

We know,

\rm :\longmapsto\:\boxed{\tt{  \frac{2tanx}{1 +  {tan}^{2} x}  = sin2x}}

\rm \:  =  \: \dfrac{2}{sin150\degree }

\rm \:  =  \: \dfrac{2}{sin(180\degree  - 30\degree )}

\rm \:  =  \: \dfrac{2}{sin30\degree }

\rm \:  =  \: 2 \times 2

\rm \:  =  \: 4

Hence,

\rm\implies \:\boxed{\tt{ tan75\degree  + cot75\degree  = 4 \: }}

butalik [34]3 years ago
5 0

Step-by-step explanation:

hope this helps........

You might be interested in
.................................
JulsSmile [24]

Answer:

.- .-. . / -.-- --- ..- / .-. . .- .-.. .-.. -.-- / - .... .- - / -... --- .-. . -.. ..--..

5 0
3 years ago
What is the sum of the geometric series
lbvjy [14]
If S denotes the sum of the first n terms of a geometric series with first term a and common ratio r, then

S=a+ar+ar^2+\cdots+ar^{n-3}+ar^{n-2}+ar^{n-1}
rS=ar+ar^2+ar^3+\cdots+ar^{n-2}+ar^{n-1}+ar^n
\implies S-rS=a+(ar-ar)+(ar^2-ar^2)+\cdots+(ar^{n-1}-ar^{n-1})-ar^n
\implies (1-r)S=a(1-r^n)
\implies S=a=\dfrac{1-r^n}{1-r}

Using summation notation, you have

S=\displaystyle\sum_{x=1}^nar^{x-1}=\sum_{x=0}^{n-1}ar^x=a\dfrac{1-r^n}{1-r}

In this case, you have a=2, r=\dfrac12, and n=16. So the value of the sum is

\displaystyle\sum_{x=0}^{15}2\left(\frac14\right)^x=2\dfrac{1-\left(\frac14\right)^{16}}{1-\frac14}\approx2.67

Rounded to the nearest whole number, the answer would be 3.
4 0
4 years ago
Read 2 more answers
2 factor of 28 added up to 9
kaheart [24]
I think its 14 because in order to get to 28 but 2 you count 14 times saying 2×14
5 0
3 years ago
Subtract. Write your answer in simplest form.
hichkok12 [17]

Answer:

No. it would be 4 3/14

Step-by-step explanation:

5-1=4

common denominator is 14 to get there,

1x7=7

2x7=14

2x2=4

7x2=14

7/14 - 4/14 = 3/14

put it all back together and you get 4 3/14

7 0
3 years ago
Please someone smart help mehh .^. (Asap)
jarptica [38.1K]
The answer is B. 37/56
8 0
3 years ago
Read 2 more answers
Other questions:
  • help me plz :)) rrrrrrrrrrrrrrrrqetiyyyyyyygjhdvxqydedvygidqieytdgr7734tvbgi3ybdxh2t3v97swnhft9debysij19dvyyedvgt1iu74fdvg
    14·1 answer
  • This diagram of airport runway intersections shows two parallel runways. A taxi way crosses both runways. How are 6 and 2 relate
    13·1 answer
  • Select all that apply. Which of the following decimal numbers are examples of terminating decimals? Here is all the choices... 0
    6·2 answers
  • Solve 5x2-2x-8=0 using the quadratic formula.
    5·2 answers
  • I need help on how to do this
    12·1 answer
  • How do I do this or whats the answer im so lost and having a mental breakdown ✌​
    8·1 answer
  • Solve the following problem.<br><br> 9/5−4/3=
    7·1 answer
  • Please help i'll mark big brain​
    6·1 answer
  • What is the sum to 5.3x10^5 and 3.8x10^4 <br><br> pls help
    11·1 answer
  • Name the Solid.<br> What is the VOLUME of the solid?<br> Round to the nearest tenth if necessary.
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!