1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alekssr [168]
3 years ago
10

Q). Show that: tan 75° + cot 75° = 4.​

Mathematics
2 answers:
elena-s [515]3 years ago
6 0

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:tan75\degree  + cot75\degree

Consider

\rm :\longmapsto\:tan75\degree

\rm \:  =  \: tan(45\degree  + 30\degree )

\rm \:  =  \: \dfrac{tan45\degree  + tan30\degree }{1 - tan45\degree  \times tan30\degree }

\rm \:  =  \: \dfrac{1 + \dfrac{1}{ \sqrt{3} } }{1 - 1 \times \dfrac{1}{ \sqrt{3} } }

\rm \:  =  \: \dfrac{1 + \dfrac{1}{ \sqrt{3} } }{1 - \dfrac{1}{ \sqrt{3} } }

\rm \:  =  \: \dfrac{ \sqrt{3} + 1 }{ \sqrt{3}  - 1}

On rationalizing the denominator, we get

\rm \:  =  \: \dfrac{ \sqrt{3} + 1 }{ \sqrt{3}  - 1} \times \dfrac{ \sqrt{3} + 1 }{ \sqrt{3} + 1 }

\rm \:  =  \: \dfrac{ {( \sqrt{3}  + 1)}^{2} }{ {( \sqrt{3}) }^{2} -  {(1)}^{2}  }

\rm \:  =  \: \dfrac{3 + 1 + 2 \sqrt{3} }{3 - 1}

\rm \:  =  \: \dfrac{4+ 2 \sqrt{3} }{2}

\rm \:  =  \: \dfrac{2(2+  \sqrt{3} )}{2}

\rm \:  =  \: 2 +  \sqrt{3}

\rm\implies \:\boxed{\tt{ tan75\degree  = 2 +  \sqrt{3} \: }}

Now,

\rm :\longmapsto\:cot75\degree

\rm \:  =  \: \dfrac{1}{tan75\degree }

\rm \:  =  \: \dfrac{1}{2 +  \sqrt{3} }

On rationalizing the denominator, we get

\rm \:  =  \: \dfrac{1}{2 +  \sqrt{3} }  \times \dfrac{2 -  \sqrt{3} }{2 -  \sqrt{3} }

\rm \:  =  \: \dfrac{2 -  \sqrt{3} }{ {(2)}^{2}  -  {( \sqrt{3}) }^{2} }

\rm \:  =  \: \dfrac{2 -  \sqrt{3} }{4 - 3}

\rm \:  =  \: 2 -  \sqrt{3}

\bf\implies \:\boxed{\tt{ cot75\degree  = 2 -  \sqrt{3} \: }}

Now, Consider

\rm :\longmapsto\:tan75\degree  + cot75\degree

\rm \:  =  \: 2 +  \sqrt{3} + 2 -  \sqrt{3}

\rm \:  =  \: 4

Hence,

\rm\implies \:\boxed{\tt{ tan75\degree  + cot75\degree  = 4 \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

<h2><u>Alternative Method</u></h2>

\rm :\longmapsto\:tan75\degree  + cot75\degree

\rm \:  =  \: tan75\degree  +  \dfrac{1}{tan75\degree }

\rm \:  =  \: \dfrac{ {tan}^{2}75\degree  +  1}{tan75\degree }

\rm \:  =  \: \dfrac{1}{\dfrac{tan75\degree }{1 +  {tan}^{2} 75\degree } }

\rm \:  =  \: \dfrac{2}{\dfrac{2tan75\degree }{1 +  {tan}^{2} 75\degree } }

We know,

\rm :\longmapsto\:\boxed{\tt{  \frac{2tanx}{1 +  {tan}^{2} x}  = sin2x}}

\rm \:  =  \: \dfrac{2}{sin150\degree }

\rm \:  =  \: \dfrac{2}{sin(180\degree  - 30\degree )}

\rm \:  =  \: \dfrac{2}{sin30\degree }

\rm \:  =  \: 2 \times 2

\rm \:  =  \: 4

Hence,

\rm\implies \:\boxed{\tt{ tan75\degree  + cot75\degree  = 4 \: }}

butalik [34]3 years ago
5 0

Step-by-step explanation:

hope this helps........

You might be interested in
Divide 8/12 to find an equivalent fraction
likoan [24]
If you divide 8 by 4, it comes to 2 
<span>If you divide 12 by 2, it comes to 3 </span>
<span>That fraction is 2/3 </span>

<span>The Fraction 10/15 is equal to 2/3 because... </span>

<span>If you divide 10 by 5. it comes to 2 </span>
<span>If you divide 15 by 5, it comes to 3 </span>
7 0
3 years ago
Read 2 more answers
How can you describe the graph of the equation ax + by = c? Explain
Sergeu [11.5K]

Answer:

A straight line

The gradient is -b/a

The y-intercept is at c/b

The x-intercept is at c/a

7 0
3 years ago
Cameroon corp. manufactures and sells electric staplers for $15.90 each. if 10,000 units were sold in december, and management f
Serga [27]
Sales in December = 10,000*15.90 = $159,000

For 5% forecast growth each month;

Sales in January = (1+0.05)*Sales in December = 1.05*159,000 = $166,950
Sales in February = (1+0.05)*Sales in January = 1.05*166,950 = $175,297.50

The company should budget for $175,297.50 sales in February.
5 0
4 years ago
Determine whether the sequence is geometric.if it is geometric,find the common ratio r​
Temka [501]

Answer: r = 2

Step-by-step explanation:

3 0
3 years ago
A boy 1.5 m tall can just see the sun over a wall 71.5 m high which is
igomit [66]

Answer:

C. 45 degree angle

Step-by-step explanation:

let AB be the height of the wall and CD be the height of boy

with BC as distance between them.

we have AE = AB-BE = 3.64-1.54 = 2.1m

and ED = BC = 2.1m

in triangle AED, we have

tanФ = P/B = 2.1/2.1

tanФ = 1

∴ Ф = 45°

Hence the sun is elevated at an angle of 45 °.

5 0
3 years ago
Other questions:
  • The area of one side of a skyscraper is 90,000 square feet. The area of the corresponding side of a scale model is 200 square in
    9·1 answer
  • V=1/3pie r^2 hail was for r I’ll give you 30 points
    5·1 answer
  • Working alone at their respective constant rates, machine a and machine b can fill a certain order in 3 hours and 6 hours, respe
    11·2 answers
  • Solve 7p - 4 + 12p = -3 (5 + p) Can you show the work please?
    6·2 answers
  • A process of inserting points between actual plotted data points or extending an actual line of data is called:
    9·1 answer
  • What is 4r+9r-11r+7r please im not trying to fail
    6·2 answers
  • Where do i put parantheses into 140/2+12-4x2=2
    10·1 answer
  • 5 points<br> What is the simplified form of the following expression? *<br> -(4x - 9)
    10·1 answer
  • Unit 6lesson 4 practice problems:
    14·2 answers
  • Giving brailiest for free so what's 10/5
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!