Answer:
Step-by-step explanation:
Both cars, X and Y travelled 80 miles each.
Speed = distance/time
If car X took 2 hours to travel 80 miles, it means that the speed at which car X travelled is
80/2 = 40 mph
If car Y traveled at an average speed that was 50 percent faster than the average speed of car X, it means that the speed at which car X travelled is
40 + 0.5 × 40 = 60 mph
Time = distance/speed
Therefore, time taken by car Y to travel 80 miles is
80/60 = 1.33 hours
Answer:
Option B.
Step-by-step explanation:
If two lines are parallel then their slopes are always same.
Following this rule we can find the slope by the given pairs of coordinates of the options.
If the slope of the line is same as the slope of y axis then the line passing through these points will be parallel to the y axis.
Slope of y - axis = ∞
Option A). Slope = 
= 
= 
= 775
Therefore, line passing through points (3.2, 8.5) and (3.22, 24) is not parallel to y axis.
Option B). Slope of the line passing through
and
will be
= 
= ∞
Therefore, line passing though these points is parallel to the y axis.
Option C). Slope of the line passing through
and (7.2, 5.4)
= 
= 0
Therefore, slope of this line is not equal to the slope of y axis.
Option B. is the answer.
Answer:
115.48
Step-by-step explanation:
This shape can be split into two distinct shapes
Two halves of a semi circle, and a rectangle in between
Circle:
Putting both halves of the semi circle together will give you a full circle. The diameter of the circle is given (7m).
The area of a circle is A = π 
The radius, r, is half of the diameter, so 7 / 2 = 3.5m
A = π 
A = π * 
A = 38.38
Rectangle:
The area of a rectangle is A = h b
The height, h, is known at 7m
The base, b, can be found by removing the length from the dot to the end of the semi circles. This length is the radius of the semi circles, 3.5m
Removing the radius from the total length given
18 - 3.5 - 3.5 = 11m
The base is 11m
A = h b
A = 7 * 11 = 77
Total Area = Circle area + Rectangle area
Total Area = 38.38 + 77 = 115.48
Step-by-step explanation:
<h2>
<em><u>You can solve this using the binomial probability formula.</u></em></h2><h2>
<em><u>You can solve this using the binomial probability formula.The fact that "obtaining at least two 6s" requires you to include cases where you would get three and four 6s as well.</u></em></h2><h2>
<em><u>You can solve this using the binomial probability formula.The fact that "obtaining at least two 6s" requires you to include cases where you would get three and four 6s as well.Then, we can set the equation as follows:</u></em></h2><h2>
<em><u>You can solve this using the binomial probability formula.The fact that "obtaining at least two 6s" requires you to include cases where you would get three and four 6s as well.Then, we can set the equation as follows: </u></em></h2><h2>
<em><u>You can solve this using the binomial probability formula.The fact that "obtaining at least two 6s" requires you to include cases where you would get three and four 6s as well.Then, we can set the equation as follows: P(X≥x) = ∑(k=x to n) C(n k) p^k q^(n-k) </u></em></h2><h2>
<em><u>You can solve this using the binomial probability formula.The fact that "obtaining at least two 6s" requires you to include cases where you would get three and four 6s as well.Then, we can set the equation as follows: P(X≥x) = ∑(k=x to n) C(n k) p^k q^(n-k) n=4, x=2, k=2</u></em></h2><h2>
<em><u>You can solve this using the binomial probability formula.The fact that "obtaining at least two 6s" requires you to include cases where you would get three and four 6s as well.Then, we can set the equation as follows: P(X≥x) = ∑(k=x to n) C(n k) p^k q^(n-k) n=4, x=2, k=2when x=2 (4 2)(1/6)^2(5/6)^4-2 = 0.1157</u></em></h2><h2>
<em><u>You can solve this using the binomial probability formula.The fact that "obtaining at least two 6s" requires you to include cases where you would get three and four 6s as well.Then, we can set the equation as follows: P(X≥x) = ∑(k=x to n) C(n k) p^k q^(n-k) n=4, x=2, k=2when x=2 (4 2)(1/6)^2(5/6)^4-2 = 0.1157when x=3 (4 3)(1/6)^3(5/6)^4-3 = 0.0154</u></em></h2><h2>
<em><u>You can solve this using the binomial probability formula.The fact that "obtaining at least two 6s" requires you to include cases where you would get three and four 6s as well.Then, we can set the equation as follows: P(X≥x) = ∑(k=x to n) C(n k) p^k q^(n-k) n=4, x=2, k=2when x=2 (4 2)(1/6)^2(5/6)^4-2 = 0.1157when x=3 (4 3)(1/6)^3(5/6)^4-3 = 0.0154when x=4 (4 4)(1/6)^4(5/6)^4-4 = 0.0008</u></em></h2><h2>
<em><u>You can solve this using the binomial probability formula.The fact that "obtaining at least two 6s" requires you to include cases where you would get three and four 6s as well.Then, we can set the equation as follows: P(X≥x) = ∑(k=x to n) C(n k) p^k q^(n-k) n=4, x=2, k=2when x=2 (4 2)(1/6)^2(5/6)^4-2 = 0.1157when x=3 (4 3)(1/6)^3(5/6)^4-3 = 0.0154when x=4 (4 4)(1/6)^4(5/6)^4-4 = 0.0008Add them up, and you should get 0.1319 or 13.2% (rounded to the nearest tenth)</u></em></h2>