Answer:
see below
Step-by-step explanation:
The formula for the sum of an infinite geometric series with first term a1 and common ratio r (where |r| < 1) is ...
sum = a1/(1 -r)
Applying this to the given series, we get ...
a. sum = 5/(1 -3/4) = 5/(1/4) = 20
b. sum = d/(1 -1/t) = d/((t-1)/t) = dt/(t-1)
_____
The derivation of the above formula is in most texts on sequences and series. In general, you write an expression for the difference of the sum (S) and the product r·S. You find all terms of the series cancel except the first and last, and the last goes to zero in the limit, because r^∞ → 0 for |r| < 1. Hence you get ...
S -rS = a1
S = a1/(1 -r)
Step-by-step explanation:
<h2>
<em><u>3</u></em><em><u>x</u></em><em><u> </u></em><em><u>+</u></em><em><u> </u></em><em><u>1</u></em><em><u>0</u></em><em><u> </u></em><em><u>≤</u></em><em><u> </u></em><em><u>3</u></em><em><u>0</u></em><em><u> </u></em></h2><h2>
<em><u>3</u></em><em><u>x</u></em><em><u> </u></em><em><u>≤</u></em><em><u> </u></em><em><u>3</u></em><em><u>0</u></em><em><u> </u></em><em><u>-</u></em><em><u> </u></em><em><u>1</u></em><em><u>0</u></em><em><u> </u></em></h2><h2>
<em><u>3</u></em><em><u>x</u></em><em><u> </u></em><em><u>≤</u></em><em><u> </u></em><em><u>2</u></em><em><u>0</u></em></h2><h2>
<em><u>x </u></em><em><u>≤</u></em><em><u> </u></em><em><u>2</u></em><em><u>0</u></em><em><u>/</u></em><em><u>3</u></em></h2>
3a squared +4a-7 squared is a 2 btw
Answer: 

Step-by-step explanation:
Let's factor then solve to find the complex solutions.
Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation : 
Equations that are never true:

This equation has no solution.
A non-zero constant never equals zero.
<u><em>Therefore your answer is </em></u>