Answer:
0.368
Step-by-step explanation:
Number of red marbles= 3
Number of blue marbles= 4
Number of green marbles= 7
Total number of marbles= 3+4+7= 14
Let the first ball is taken out to be red
P(R)=
than again a second ball is drawn, number of balls left= 14-1=13
Number of red= 2
P(R)=
Total probability=
+
Total probability= 0.368
Hence, the correct answer is 0.368
Answer: BLook At the pictures Please. :)
I graphed your points so you can see it visually. Look through all the pictures they show my process.
Answer:
3 animals
Step-by-step explanation:
- combine like terms
- 6 + 2x = 15 + x
- -6 + x - 6 - x
--------------------------
3x = 9
2. divide both sides by 3
Answer:

Step-by-step explanation:
You know how subtraction is the <em>opposite of addition </em>and division is the <em>opposite of multiplication</em>? A logarithm is the <em>opposite of an exponent</em>. You know how you can rewrite the equation 3 + 2 = 5 as 5 - 3 = 2, or the equation 3 × 2 = 6 as 6 ÷ 3 = 2? This is really useful when one of those numbers on the left is unknown. 3 + _ = 8 can be rewritten as 8 - 3 = _, 4 × _ = 12 can be rewritten as 12 ÷ 4 = _. We get all our knowns on one side and our unknown by itself on the other, and the rest is computation.
We know that
; as a logarithm, the <em>exponent</em> gets moved to its own side of the equation, and we write the equation like this:
, which you read as "the logarithm base 3 of 9 is 2." You could also read it as "the power you need to raise 3 to to get 9 is 2."
One historical quirk: because we use the decimal system, it's assumed that an expression like
uses <em>base 10</em>, and you'd interpret it as "What power do I raise 10 to to get 1000?"
The expression
means "the power you need to raise 10 to to get 100 is x," or, rearranging: "10 to the x is equal to 100," which in symbols is
.
(If we wanted to, we could also solve this:
, so
)
Answer: C) For every original price, there is exactly one sale price.
For any function, we always have any input go to exactly one output. The original price is the input while the output is the sale price. If we had an original price of say $100, and two sale prices of $90 and $80, then the question would be "which is the true sale price?" and it would be ambiguous. This is one example of how useful it is to have one output for any input. The input in question must be in the domain.
As the table shows, we do not have any repeated original prices leading to different sale prices.