For the answer to the question above, I'll show my solution for the answer below.
Area A = pi r^2
<span>The rate of change of area = d A/ d t = 2 pi r d r/d t </span>
<span>r= 2t, d r = 2 d t </span>
<span>This gives </span>
<span>d A/ d t = 2 pi 2t 2 d t = 8 pi t dt </span>
<span>Integrate it </span>
<span>A= 4 pi t^2. </span>
<span>After t=5, the area will be 100* 3.14 square= 314 square units.</span>
Not entirely, it could be an isoceles triangle (a triangle which all sides are different lengths) but there is still a possibility.
Answer:
32.both of their ideas are correct whether it is to replace x or y first it doesn't matter only one can be replaced to find the value of the other.
33.It doesn't really matter all of them are correct.
Answer:
-4(2k + 3)
Step-by-step explanation:
Factoring is just dividing the whole thing by that
So -8k - 12 becomes -4(2k + 3)
m∠1 = 30° (by Vertical angle theorem)
m∠A = 80° (by Triangle sum theorem)
m∠D = 80° (by Triangle sum theorem)
The value of x is 7.5 and y is 9.
Solution:
∠ACB and ∠DCE are vertically opposite angles.
Vertical angle theorem:
<em>If two lines are intersecting, then vertically opposite angles are congruent.</em>
⇒ m∠DCE = m∠ACB
⇒ m∠1 = 30° (by Vertical angle theorem)
In triangle ACD,
Triangle sum property:
<em>Sum of the interior angles of the triangle = 180°</em>
⇒ m∠A + m∠C + m∠B = 180°
⇒ m∠A + 30° + 70° = 180°
⇒ m∠A + 100° = 180°
⇒ m∠A = 100° – 180°
⇒ m∠A = 80° (by Triangle sum theorem)
Similarly, m∠D = 80° (by Triangle sum theorem)
In ΔACD and ΔDCE,
All the angles are congruent, so ΔACD and ΔDCE are similar triangles.
<em>In similar triangle corresponding sides are in the same ratio.</em>

Do cross multiplication.
90 = 12x
7.5 = x
Now, to find y:

Do cross multiplication.
9y = 72
Divide by 9, we get
y = 8
Hence the value of x is 7.5 and y is 9.