Answer:
y ≥ x^2 - 1
Step-by-step explanation:
First, we can see that the shaded region is above what seems to be a parabola, and we also can see that the lines of the parabola are solid lines (which means that the points on the curve itself are solutions, so the symbol ≥ is used)
Then:
y ≥ a*x^2 + b*x + c
where a*x^2 + b*x + c is the general quadratic equation.
Now let's find the equation for the parabola:
f(x) = a*x^2 + b*x + c
We also can see that the vertex of the parabola is at the point (0, -1)
This means that:
f(0) = -1 = a*0^2 + b*0 + c
= -1 = c
then we have that c = -1
Then:
f(x) = a*x^2 + b*x - 1
Now we can look at the graph again, to see that the zeros of the parabola are at +1 and -1
Which means that:
f(1) = 0 = a*1^2 + b*1 - 1 = a + b - 1
f(-1) = 0 = a*(-1)^2 + b*(-1) - 1 = a - b - 1
Then we got two equations:
a + b - 1 = 0
a - b - 1 = 0
from this we can conclude that b must be zero.
Then:
b = 0
and these equations become:
a - 1 = 0
a - 1 = 0
solving for a, we get:
a = 1
Then the quadratic equation is:
f(x) = 1*x^2 + 0*x - 1
f(x) = x^2 - 1
And the inequality is:
y ≥ x^2 - 1
Answer:
(13,9) I think
Step-by-step explanation:
I hope this helps and I hope I can get Brainliest! =)
Answer:
-1
Step-by-step explanation:
The axes on your graph are not labeled, so we have to assume they follow the usual convention. That is, the vertical axis is the y-axis, and the horizontal axis is the x-axis.
The x-coordinate tells how far to the left or right of the y-axis the point is. Here, point L is 1 grid square to the left of the vertical line that is the y-axis. If you follow the vertical line through L down to where it crosses the x-axis, you will see an unlabeled open circle there. (We don't know the purpose of that circle, but we call it to your attention so you know you're looking in the right place.)
Looking 4 more grid squares to the left of that point, you see the marking "-5". This tells you each grid square corresponds to one unit. Then the first one to the left of the y-axis (where the open circle is) has a value of -1. That is the value of the x-coordinate of point L.
The x-coordinate of point L is -1.
For a 95% confidence interval, the corresponding z-score is 1.96. Therefore the deviation will by 1.96*0.5 lbs = 0.98 lbs. Therefore, the confidence interval will be (5 - 0.98, 5 + 0.98), which is (4.02, 5.98). The weight range is from 4.02 lbs to 5.98 lbs.
The surface area of the right triangular prism is 270 sq ft
<h3>Total surface ara of the prism</h3>
The total surface area of the prism is the sum of all the area of its faces
For the two triangles
A = 2(0.5bh)
A = bh
A = 7 * 12 = 84 sq.ft
For the two rectangles
A = 2lw
A = 2(6*12)
A = 2 * 72 = 144 sq.ft
For the third triangle;
Area 6ft * 7ft
Area = 42 sq.feet
Taking the sum of the areas
TSA = 84 + 144 + 42
TSA = 270 sq ft
Hence the surface area of the right triangular prism is 270 sq ft
Learn more on surface area of prism here; brainly.com/question/1297098