Answer:
A. NADH and FADH2 both donate electrons at the same location.
Explanation:
In the respiratory chain, four large protein complexes inserted into the mitochondrial inner membrane transport NADH and FADH₂ electrons (formed in glycolysis and the Krebs cycle) to oxygen gas, reducing them to NAD⁺ and FAD, respectively.
These electrons have great affinity for oxygen gas and, when combined with it, reduce it to water molecules at the end of the reaction.
Oxygen gas effectively participates in cellular respiration at this stage, so its absence would imply interruption of the process.
NADH and FADH₂ electrons, when attracted to oxygen, travel a path through protein complexes, releasing energy in this process.
The energy released by the NADH and FADH₂ electrons in the respiratory chain in theory yields <u>34</u> <u>ATP</u>, however, under normal conditions an average of 26 ATP molecules is formed.
If we consider that these 26 molecules are added to the two ATP formed in glycolysis and two ATP formed in the Krebs cycle, it can be said that cellular respiration reaches a maximum yield of 30 ATP per glucose molecule, although theoretically this number was 38 ATP per glucose molecule.
Answer:
Pentose sugar
Explanation:
phosphate and pentose sugar are the backbone of a dna strand
Answer: I think that it would be C because blooms are due to eutrophication, which means that there are high levels of phosphate in the water. Phosphate is a main ingredient in pesticides, which can run-off into rivers.
Answer:
Typically, the nucleus is the most prominent organelle in a cell (Figure 1). The nucleus (plural = nuclei) houses the cell's DNA in the form of chromatin and directs the synthesis of ribosomes and proteins.
Explanation:
Fibrin is involved in shrinking clots which is also apart of "hemostasis" and wound healing. It has the ability to protect tumors from cells immune to cancers.