Answer:
one and fifty six hundred thousandths
1) function f(x)
x - 5
f(x) = ----------------
3x^2 - 17x - 28
2) factor the denominator:
3x^2 - 17x - 28 = (3x + 4)(x - 7)
x - 5
=> f(x) = -----------------------
(3x + 4) (x - 7)
3) Find the limits when x → - 4/3 and when x → 7
Lim of f(x) when x → - 4/3 = +/- ∞
=> vertical assymptote x = - 4/3
Lim of f(x) when x → 7 = +/- ∞
=> vertical assymptote x = 7
Answer: there are assympotes at x = 7 and x = - 4/3
Answer:
97.3%
Step-by-step explanation:
Let the three bulbs be A, B and C respectively.
Let P(A) denote the probability that the first bulb will burn out
Let P(B) denote the probability that the second bulb will burn out
Let P(C) denote the probability that the third bulb will burn out
Now, we are told that Each one has a 30% probability of burning out within the month.
Thus;
P(A) = P(B) = P(C) = 30% = 0.3
Now, probability that at the end of the month at least one of the bulbs will be lit will be given as;
P(at least one bulb will be lit) = 1 - (P(A) × P(B) × P(C))
P(at least one bulb will be lit) = 1 - (0.3 × 0.3 × 0.3) = 0.973 = 97.3%
the answer to this is x= -1
Do you know that multiplicity means the number of times any factor appears in the factored result? Just checking. For example The graph of y = x^2 - 2x + 1 has a multiplicity of 2. they are y = (x - 1) * ( x - 1)
y = x^2 - 3x - 4 has 2 factors.
y = (x - 4)(x + 1) each of the factors has a multiplicity of 1.
So the answer to your question is there are 5 real zeros and 2 complex zeros.