P = principal (initial amount), r = rate of interest, and t = time
So, A = 3000(1+0.025)^4
Answer: $3,311.44 (approximately)
Part I)
The module of vector AB is given by:
lABl = root ((- 3) ^ 2 + (4) ^ 2)
lABl = root (9 + 16)
lABl = root (25)
lABl = 5
Part (ii)
The module of the EF vector is given by:
lEFl = root ((5) ^ 2 + (e) ^ 2)
We have to:
lEFl = 3lABl
Thus:
root ((5) ^ 2 + (e) ^ 2) = 3 * (5)
root ((5) ^ 2 + (e) ^ 2) = 15
Clearing e have:
(5) ^ 2 + (e) ^ 2 = 15 ^ 2
(e) ^ 2 = 15 ^ 2 - 5 ^ 2
e = root (200)
e = root (2 * 100)
e = 10 * root (2)
Answer:
f(g) = -3( x^2 -x-6) -6 = -3x^2+3x+12
61 because you always multiply first 60 x 0= 0 so now we have 60+1 which is 61
Answer:
The answers are given below.
Step-by-step explanation:
The computation is shown below:
1.a.
Profit Margin = Net Income ÷ Sales × 100
= $374 ÷ $6,900 ×100
= 5.4%
1-b:
Average Assets = (Beginning Assets + Ending Assets) ÷ 2
= ($3,200 + $3,600) ÷ 2
= $3,400
Now
Return on Assets = Net Income ÷ Average Assets
= $374 ÷ $3,400
= 11%
1-c
Average Equity = ($700 + $700 + $320 + $270) ÷ 2
= $995
Now
Return on Equity = Net Income ÷ Average Equity *100
= $374 ÷ $995
= 37.59%
2:
Dividends Paid = Beginning Retained Earnings + Net Income – Ending Retained Earnings
= $270 + $374 - $320
= $324