1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
professor190 [17]
3 years ago
9

For an arithmetic sequence, a35=57. If the common difference is 5. Find a1 and the sum of the first 61 terms.

Mathematics
1 answer:
Flauer [41]3 years ago
8 0

 

\displaystyle\bf\\a_{35}=57\\r=5\\----\\a_1=?\\S_{61}=?\\----\\Solve:\\1)\\a_1=a_{35}-(35-1)\times r=57-34\times 5=57-170=-113\\\boxed{\bf a_1=-113}\\\\

.

\displaystyle\bf\\2)\\A_{61}=a_1+(61-1)\times r=-113+60\times5=-113+300=187\\\\S_{61}=(-113)+(-108)+(-103)+...+(-8)+(-3)+2+7+12+...+187\\\\S_{61}=SA+SB\\\\SA=(-113)+(-108)+(-103)+...+(-8)+(-3)=-(3+8+103+108+113)\\\\n=\frac{113-8}{5}+1=\frac{105}{5}+1=21+1=22~terms\\SA=-\Big( \frac{n(113+3)}{2} \Big)=-\Big( \frac{22\times116}{2} \Big)=-11\times116 =-1276

.

\displaystyle\bf\\SB=2+7+12+...+187\\\\n=\frac{187-2}{5}+1=\frac{185}{5}+1=37+1=38~terms\\\\SB=\frac{n(187+2)}{2}=\frac{38\times189}{2}=19\times189=3591\\\\S_{61}=SA+SB=-1276+3591=2315\\\\\boxed{\bf S_{61}=2315}    

 

 

You might be interested in
Help??????? <br>dhdjdjmsjd​
Nimfa-mama [501]

Answer:

1/2 over 7/8

Step-by-step explanation:

becauseim smartt

4 0
2 years ago
Read 2 more answers
Verify the identity. Show your work. 1 + sec^2xsin^2x = sec^2x
allsm [11]
\bf \textit{Pythagorean Identities}&#10;\\\\&#10;1+tan^2(\theta)=sec^2(\theta)\\\\&#10;-------------------------------\\\\&#10;1+sec^2(x)sin^2(x)=sec^2(x)&#10;\\\\\\&#10;1+\cfrac{1}{cos^2(x)}\cdot sin^2(x)\implies 1+\cfrac{sin^2(x)}{cos^2(x)}\\\\\\ 1+tan^2(x)\implies sec^2(x)
4 0
3 years ago
WILL MARK BRAINLIEST
Nutka1998 [239]

Answer:

a² + b² = 68

a3 + b3 = 520

Step-by-step explanation:

Given :

a + b = 10 (1)

ab = 16 (2)

A. Find a² + b²

(a + b)² = a² + 2ab + b² (3)

Substitutite the values of (1) and (2) into (3)

(10)² = a² + 2(16) + b²

100 = a² + 32 + b²

Subtract 32 from both sides

100 - 32 = a² + b²

a² + b² = 68

B. a^3 + b^3

(a + b)^3 = a^3 + b^3 + 3ab(a + b)

(10)^3 = a^3 + b^3 + 3*16(10)

1000 = a^3 + b^3 + 480

a^3 + b^3 = 1000 - 480

a3 + b3 = 520

5 0
3 years ago
You plan to accumulate 100,000 at the end of 42 years by making the follow-
Mariana [72]

Answer:

  Y = 479.17

Step-by-step explanation:

At the end of year 14, the balance from the deposits of X can be found using the annuity due formula:

  A = P(1+r/n)((1 +r/n)^(nt) -1)/(r/n)

where P is the periodic payment, n is the number of payments and compoundings per year, t is the number of years, and r is the annual interest rate.

  A = X(1.07)(1.07^14 -1)/0.07 ≈ 24.129022X

This accumulated amount continues to earn interest for the next 28 years, so will further be multiplied by 1.07^28. Then the final balance due to deposits of X will be ...

  Ax = (24.129022X)(1.07^28) = 160.429967X

__

The same annuity due formula can be used for the deposits of Y for the last 10 years of the interval:

  Ay = Y(1.07)(1.07^10 -1)/.07 = 14.783599Y

__

Now we can write the two equations in the two unknowns:

  Ax +Ay = 100,000

  X - Y = 100

From the latter, we have ...

  X = Y +100

So the first equation becomes ...

  160.429967(Y +100) +14.783599Y = 100000

  175.213566Y +16,043.00 = 100,000

  Y = (100,000 -16,043)/175.213566 ≈ 479.17

Y is 479.17

7 0
3 years ago
A basketball player has a 50% chance of making each free-throw. What is the probability that the player makes at least 11 out of
vitfil [10]

Answer:

100/2048=0.048828125%

Step-by-step explanation:

He has a 50% chance of making each free-throw, so 1/2*1/2*1/2*1/2*1/2*1/2*1/2*1/2*1/2*1/2*1/2=1/(2^11)=1/2048

to get a percentage you time by 100 to get 100/2048

8 0
3 years ago
Other questions:
  • Una sucesion aumenta de 0.5 en 0.5 cuales son los primeros 6 terminos si el inicial es uno ???
    6·1 answer
  • If f(x)=2x^2+3 and g(x)=x^2-7 find (f+g)(x)
    13·1 answer
  • Whats the price of 55% of 56.99
    6·1 answer
  • John buys a $5,000 savings bond with a fixed interest rate of 3% with 10 years to maturity. He also buys two $5,000 zero coupon
    6·1 answer
  • Dont guess!<br> I will mark brainliest if its correct!<br> Also no links!
    8·2 answers
  • Can someone help me please ?
    10·1 answer
  • When Ben does his math homework, he finishes 10 problems every 7 minutes. At this rate, how long will
    9·1 answer
  • Can somebody help me ?
    15·2 answers
  • ANSWER ASAP !!!!!!!!!!
    9·1 answer
  • Solve for x : 13x + 7 = -227
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!