1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
slavikrds [6]
2 years ago
13

A uniform beam of length L = 7.30m and weight = 4.45x10²N is carried by two ovorkers , Sam and Joe - Determine the force exert e

ach person events on the beam ​
Mathematics
1 answer:
Mama L [17]2 years ago
4 0

Answer:

Effort and distance = Load  x distance

7.30 x 4.45x10^2N = 3.2485 X 10^3N

We then know we can move 3 points to the right and show in regular notion.

= 3248.5

Divide by 2 = 3248.5/2 = 1624.25 force

Step-by-step explanation:

In the case of a Second Class Lever as attached diagram shows proof to formula below.

Load x distance d1 = Effort x distance (d1 + d2)

The the load in the wheelbarrow shown is trying to push the wheelbarrow down in an anti-clockwise direction whilst the effort is being used to keep it up by pulling in a clockwise direction.

If the wheelbarrow is held steady (i.e. in Equilibrium) then the moment of the effort must be equal to the moment of the load :

Effort x its distance from wheel centre = Load x its distance from the wheel centre.

This general rule is expressed as clockwise moments = anti-clockwise moments (or CM = ACM)

 

This gives a way of calculating how much force a bridge support (or Reaction) has to provide if the bridge is to stay up - very useful since bridges are usually too big to just try it and see!

The moment of the load on the beam (F) must be balanced by the moment of the Reaction at the support (R2) :

Therefore F x d = R2 x D

It can be seen that this is so if we imagine taking away the Reaction R2.

The missing support must be supplying an anti-clockwise moment of a force for the beam to stay up.

The idea of clockwise moments being balanced by anti-clockwise moments is easily illustrated using a see-saw as an example attached.

We know from our experience that a lighter person will have to sit closer to the end of the see-saw to balance a heavier person - or two people.

So if CM = ACM then F x d = R2 x D

from our kitchen scales example above 2kg x 0.5m = R2 x 1m

so R2 = 1m divided by 2kg x 0.5m

therefore R2 = 1kg - which is what the scales told us (note the units 'm' cancel out to leave 'kg')

 

But we can't put a real bridge on kitchen scales and sometimes the loading is a bit more complicated.

Being able to calculate the forces acting on a beam by using moments helps us work out reactions at supports when beams (or bridges) have several loads acting upon them.

In this example imagine a beam 12m long with a 60kg load 6m from one end and a 40kg load 9m away from the same end n- i.e. F1=60kg, F2=40kg, d1=6m and d2=9m

 

CM = ACM

(F1 x d1) + (F2 x d2) = R2 x Length of beam

(60kg x 6m) + (40Kg x 9m) = R2 x 12m

(60kg x 6m) + (40Kg x 9m) / 12m = R2

360kgm + 360km / 12m = R2

720kgm / 12m = R2

60kg = R2 (note the unit 'm' for metres is cancelled out)

So if R2 = 60kg and the total load is 100kg (60kg + 40kg) then R1 = 40kg

You might be interested in
HELP ASAP!!!
Umnica [9.8K]
Rearrange:

Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation : 

           (a)/(a^2-16)+(2/(a-4))-(2/(a+4))=0 

Simplify ————— a + 4 <span>Equation at the end of step  1  :</span><span> a 2 2 (—————————+—————)-——— = 0 ((a2)-16) (a-4) a+4 </span><span>Step  2  :</span> 2 Simplify ————— a - 4 <span>Equation at the end of step  2  :</span><span> a 2 2 (—————————+———)-——— = 0 ((a2)-16) a-4 a+4 </span><span>Step  3  :</span><span> a Simplify ——————— a2 - 16 </span>Trying to factor as a Difference of Squares :

<span> 3.1 </span>     Factoring: <span> a2 - 16</span> 

Theory : A difference of two perfect squares, <span> A2 - B2  </span>can be factored into <span> (A+B) • (A-B)

</span>Proof :<span>  (A+B) • (A-B) =
         A2 - AB + BA - B2 =
         A2 <span>- AB + AB </span>- B2 = 
        <span> A2 - B2</span>

</span>Note : <span> <span>AB = BA </span></span>is the commutative property of multiplication. 

Note : <span> <span>- AB + AB </span></span>equals zero and is therefore eliminated from the expression.

Check : 16 is the square of 4
Check : <span> a2  </span>is the square of <span> a1 </span>

Factorization is :       (a + 4)  •  (a - 4) 

<span>Equation at the end of step  3  :</span> a 2 2 (————————————————— + —————) - ————— = 0 (a + 4) • (a - 4) a - 4 a + 4 <span>Step  4  :</span>Calculating the Least Common Multiple :

<span> 4.1 </span>   Find the Least Common Multiple 

      The left denominator is :      <span> (a+4) •</span> (a-4) 

      The right denominator is :      <span> a-4 </span>

<span><span>                  Number of times each Algebraic Factor
            appears in the factorization of:</span><span><span><span>    Algebraic    
    Factor    </span><span> Left 
 Denominator </span><span> Right 
 Denominator </span><span> L.C.M = Max 
 {Left,Right} </span></span><span><span> a+4 </span>101</span><span><span> a-4 </span>111</span></span></span>


      Least Common Multiple: 
      (a+4) • (a-4) 

Calculating Multipliers :

<span> 4.2 </span>   Calculate multipliers for the two fractions 


    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = 1

   Right_M = L.C.M / R_Deno = a+4

Making Equivalent Fractions :

<span> 4.3 </span>     Rewrite the two fractions into<span> equivalent fractions</span>

Two fractions are called <span>equivalent </span>if they have the<span> same numeric value.</span>

For example :  1/2   and  2/4  are equivalent, <span> y/(y+1)2  </span> and <span> (y2+y)/(y+1)3  </span>are equivalent as well. 

To calculate equivalent fraction , multiply the <span>Numerator </span>of each fraction, by its respective Multiplier.

<span> L. Mult. • L. Num. a —————————————————— = ————————————— L.C.M (a+4) • (a-4) R. Mult. • R. Num. 2 • (a+4) —————————————————— = ————————————— L.C.M (a+4) • (a-4) </span>Adding fractions that have a common denominator :

<span> 4.4 </span>      Adding up the two equivalent fractions 
Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

a + 2 • (a+4) 3a + 8 ————————————— = ————————————————— (a+4) • (a-4) (a + 4) • (a - 4) <span>Equation at the end of step  4  :</span> (3a + 8) 2 ————————————————— - ————— = 0 (a + 4) • (a - 4) a + 4 <span>Step  5  :</span>Calculating the Least Common Multiple :

<span> 5.1 </span>   Find the Least Common Multiple 

      The left denominator is :      <span> (a+4) •</span> (a-4) 

      The right denominator is :      <span> a+4 </span>

<span><span>                  Number of times each Algebraic Factor
            appears in the factorization of:</span><span><span><span>    Algebraic    
    Factor    </span><span> Left 
 Denominator </span><span> Right 
 Denominator </span><span> L.C.M = Max 
 {Left,Right} </span></span><span><span> a+4 </span>111</span><span><span> a-4 </span>101</span></span></span>


      Least Common Multiple: 
      (a+4) • (a-4) 

Calculating Multipliers :

<span> 5.2 </span>   Calculate multipliers for the two fractions 


    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = 1

   Right_M = L.C.M / R_Deno = a-4

Making Equivalent Fractions :

<span> 5.3 </span>     Rewrite the two fractions into<span> equivalent fractions</span>

<span> L. Mult. • L. Num. (3a+8) —————————————————— = ————————————— L.C.M (a+4) • (a-4) R. Mult. • R. Num. 2 • (a-4) —————————————————— = ————————————— L.C.M (a+4) • (a-4) </span>Adding fractions that have a common denominator :

<span> 5.4 </span>      Adding up the two equivalent fractions 

(3a+8) - (2 • (a-4)) a + 16 ———————————————————— = ————————————————— (a+4) • (a-4) (a + 4) • (a - 4) <span>Equation at the end of step  5  :</span> a + 16 ————————————————— = 0 (a + 4) • (a - 4) <span>Step  6  :</span>When a fraction equals zero :<span><span> 6.1 </span>   When a fraction equals zero ...</span>

Where a fraction equals zero, its numerator, the part which is above the fraction line, must equal zero.

Now,to get rid of the <span>denominator, </span>Tiger multiplys both sides of the equation by the denominator.

Here's how:

a+16 ——————————— • (a+4)•(a-4) = 0 • (a+4)•(a-4) (a+4)•(a-4)

Now, on the left hand side, the <span> (a+4) •</span> (a-4)  cancels out the denominator, while, on the right hand side, zero times anything is still zero.

The equation now takes the shape :
   a+16  = 0

Solving a Single Variable Equation :

<span> 6.2 </span>     Solve  :    a+16 = 0<span> 

 </span>Subtract  16  from both sides of the equation :<span> 
 </span>                     a = -16 

One solution was found :

                  <span> a = -16</span>

4 0
3 years ago
Congruent figures are figures where...(choose all that apply)
ElenaW [278]
3 is the answer because the a correct
6 0
3 years ago
Could you please explain it?
Troyanec [42]
Hello,
there are some words that I could not read. But:
I support evements are independants.
p(s)=0.2
p(l)=1-0.2=0.8 l=lose

1)0.8*0.2=0.16

2) 0.8²*0.2=0.128

3) 0.8^3*0.2=0.1024

4) 0.2*0.8^(n-1)

6 0
3 years ago
I WILL GIVE BRAINLIEST
Tom [10]

Step-by-step explanation:

9/8 × (-7/3) =

9 × -7 = -63

8 × 3 = 24

-63/24 simplify

-21/8

7 0
3 years ago
Express (16³) 1/4 in simplest radical form.
Doss [256]

Answer:

70

Step-by-step explanation:

4 0
2 years ago
Other questions:
  • 1)How many ways can the letters in the word BOOKKEEPER be arranged? (Must show set-up )
    11·1 answer
  • Can I get some help please? Show your work <br><br> Thanks!
    10·1 answer
  • the difference between two numbers is 342. the bigger number is 4 times the smaller number. find the product of the two numbers.
    5·1 answer
  • HELP PLZ ASAP I BEG U
    15·1 answer
  • What is x*x=15? (Basically make an equation that equals up to 15.)
    14·1 answer
  • Solve this system of linear equations. Separate
    13·2 answers
  • Y+4= 2/3 (x+3) written in standard form​
    6·2 answers
  • HURRY I NEED HELP ASAP question: The name used to represent 1,000 liters is the
    12·2 answers
  • If x/y = -2 find square root of x^2/y^2+y^2/x^2​
    6·1 answer
  • Mm<br> E<br> 9. Solve: 3(x+4) ≤36<br> x&gt; 8<br> x≤8<br> x≤12<br> X&gt;12
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!