Answer:
The answer is strictly between B or D
The better answer is organism
Answer:
1.2 mL
Explanation:
<em>This is a problem of simple dilution. The dilution principle simply agrees that the number of moles before dilution must be equal to the number of moles after dilution.</em>
Recall that: number of moles = mass/molar mass or molarity x volume.
Hence, for the dilution principle:
initial molarity x initial volume = final molarity x final volume.
In this case, initial molarity of NaOH = 1 M, initial volume = ?, final molarity = 0.1 M, final volume = 12.0 mL.
Initial volume = final molarity x final volume/initial molarity
= 0.1 x 12/1 = 1.2 mL
It thus means that 1.2 mL of 1 M NaOH would be taken and then diluted up to 12.0 mL mark by the addition of distilled water in order to produce 12.0 mL, 0.10 M NaOH solution.
Answer:
Answer is C. Bacteria
Certain types of bacteria have a relationship with certain plants where they help convert nitrogen into a usable form.
Explanation:
Nitrogen is abundant in the atmosphere, but plants cannot use it because of the absence of a necessary enzyme, nitrogenase, which converts nitrogen into a usable form. So they form a symbiotic relationship (mutually-beneficial arrangement) with nitrogen fixing soil bacteria (rhizobia) which perform biological nitrogen fixation. Biological nitrogen fixation is a process in which the symbiotic nitrogen-fixing bacteria coverts atmospheric nitrogen into ammonia and organic derivatives that plants can use to synthesize proteins. This bacteria form nodules on the roots of plants like legumes in which nitrogen fixation takes place.
Both plants and bacteria benefit from this symbiotic relationship, as the plant obtains ammonia to synthesize proteins from nitrogen in the atmosphere while bacteria obtain carbon compounds from the plant produced through photosynthesis and a secure environment to grow. As the plant roots leave behind some of the usable form of nitrogen in the soil, this process also increase soil fertility.