Long-term potentiation (LTP) is considered a cellular correlate of learning and memory. The presence of G protein-activated inwardly rectifying K(+) (GIRK) channels near excitatory synapses on dendritic spines suggests their possible involvement in synaptic plasticity. However, whether activity-dependent regulation of channels affects excitatory synaptic plasticity is unknown. In a companion article we have reported activity-dependent regulation of GIRK channel density in cultured hippocampal neurons that requires activity oF receptors (NMDAR) and protein phosphatase-1 (PP1) and takes place within 15 min. In this study, we performed whole-cell recordings of cultured hippocampal neurons and found that NMDAR activation increases basal GIRK current and GIRK channel activation mediated by adenosine A(1) receptors, but not GABA(B) receptors. Given the similar involvement of NMDARs, adenosine receptors, and PP1 in depotentiation of LTP caused by low-frequency stimulation that immediately follows LTP-inducing high-frequency stimulation, we wondered whether NMDAR-induced increase in GIRK channel surface density and current may contribute to the molecular mechanisms underlying this specific depotentiation. Remarkably, GIRK2 null mutation or GIRK channel blockade abolishes depotentiation of LTP, demonstrating that GIRK channels are critical for depotentiation, one form of excitatory synaptic plasticity.
Learn more about receptors here:
brainly.com/question/11985070
#SPJ4
B. They decrease. As more we use the sources of nature, the less is left.
Hello there :)
What I could say though are the following of the function of proteins:
Building Tissues and Muscles. Protein is necessary in building and repairing body tissues. ...
Hormone Production. ...
Enzymes. ...
Immune Function. ...
Energy.
Answer: Cell number one is an hypotonic solution, cell number two is an isotonic solution, and cell three is an hypertonic solution.
Explanation:
Cell number one which is a 98% water content is added the 100% water solution, water moves from low to high concentration. Therefore, the water moves from the solution into the cell, which is hypotonic.
Cell number two which is a 98% water content added with a 98% water solution. These two solutions are equal to one another, so the water does not move. This is isotonic.
Cell number three which is a 98% water content added with a 80% water solution. Water moves from high to low concentrations, so water moves from the cell to the solution. The water leaves the cell, which is an hypertonic.