Using a z-score table:
P(z<1.87)=0.96926
P(z<1.87)=0.96926 x 100%
P(z<1.87)=96.926%
To solve this problem, let us first find for the binary
equivalents of the numbers. They are:
Decimal --> Binary
+ 29 --> 00011101
+ 49 --> 00110001
- 29 --> 11100011
- 49 --> 11001111
Now we apply the normal binary arithmetic to these converted
numbers:
(+ 29) + (- 49) ---> 00011101 + 11001111 =
11101100 ---> - 20 (TRUE)
(- 29) + (+ 49) ---> 11100011 + 00110001 = 00010100
---> + 20 (TRUE)
(- 29) + (- 49) ---> 11100011 + 11001111 = 10110010
---> - 78 (TRUE)
V/LW=H , you have to isolate the h so you must divide both sides by LW
Answer:
x=0.25
Step-by-step explanation:
By the PEMDAS rule, as long as the stuff inside the parentheses add up to 42, it would be correct. Therefore:
A. Correct because 40 + 2 = 42
B. Correct because 20 + 22 = 42
C. Incorrect because 4 + 20 = 24 ≠ 42
D. Incorrect, because 4 + 2 = 6 ≠ 42