1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
TiliK225 [7]
2 years ago
11

I need help in learning how to solve this equation using substitution:

Mathematics
1 answer:
Tomtit [17]2 years ago
4 0

Answer:

x=3, z=-1, y=6

Step-by-step explanation:

you need to make the coefficients of each variable equal to each other then subtract 2 equations.

this one: multiply -4 in 1st

4x+4y+4z=32

-4x+4y+5z=7

_____________

8x+0-z=25

we have 2 equations with 2 variables now

2x+2z=4

8x-z=25

You might be interested in
Find the slope of the line that passes through the two points below (-4,4) (-3,9)
diamong [38]

Answer:

5

Step-by-step explanation: this equation works when you are given two points

\frac{y_{2}-y_{1}  }{x_{2} -x_{1} } =slope

\frac{9-4}{-3-(-4)} =\frac{5}{-3+4} =\frac{5}{1}=5

8 0
2 years ago
Let f(x)=4x+7 and g(x)=3x-5. find (fog)(-4)<br><br> A. -9 <br> B. -61 <br> C. -32 <br> D. -17
vovikov84 [41]

Answer:

B

Step-by-step explanation:

To evaluate (f ○ g)(- 4), first evaluate g(- 4) then substitute this value into f(x)

g(- 4)  = 3(- 4) - 5 = - 12 - 5 = - 17, then

f(- 17) = 4(- 17) + 7 = - 68 + 7 = - 61 → B

5 0
2 years ago
What is the first step in describing what figure results when a given plane intersects a given three dimensional figure?
kaheart [24]
<h2><u><em>Divide and subtract from both sides</em></u></h2>
3 0
2 years ago
Is -6/7 in decimal form'
Anuta_ua [19.1K]
6/7 is in fraction format . . . for it to be in decimal format it would be 0.8571 . . .
3 0
2 years ago
Read 2 more answers
Can someone check whether its correct or no? this is supposed to be the steps in integration by parts​
Gwar [14]

Answer:

\displaystyle - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

Step-by-step explanation:

\boxed{\begin{minipage}{5 cm}\underline{Integration by parts} \\\\$\displaystyle \int u \dfrac{\text{d}v}{\text{d}x}\:\text{d}x=uv-\int v\: \dfrac{\text{d}u}{\text{d}x}\:\text{d}x$ \\ \end{minipage}}

Given integral:

\displaystyle -\int \dfrac{\sin(2x)}{e^{2x}}\:\text{d}x

\textsf{Rewrite }\dfrac{1}{e^{2x}} \textsf{ as }e^{-2x} \textsf{ and bring the negative inside the integral}:

\implies \displaystyle \int -e^{-2x}\sin(2x)\:\text{d}x

Using <u>integration by parts</u>:

\textsf{Let }\:u=\sin (2x) \implies \dfrac{\text{d}u}{\text{d}x}=2 \cos (2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

Therefore:

\begin{aligned}\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\sin (2x)- \int \dfrac{1}{2}e^{-2x} \cdot 2 \cos (2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\sin (2x)- \int e^{-2x} \cos (2x)\:\text{d}x\end{aligned}

\displaystyle \textsf{For }\:-\int e^{-2x} \cos (2x)\:\text{d}x \quad \textsf{integrate by parts}:

\textsf{Let }\:u=\cos(2x) \implies \dfrac{\text{d}u}{\text{d}x}=-2 \sin(2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

\begin{aligned}\implies \displaystyle -\int e^{-2x}\cos(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\cos(2x)- \int \dfrac{1}{2}e^{-2x} \cdot -2 \sin(2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x\end{aligned}

Therefore:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x

\textsf{Subtract }\: \displaystyle \int e^{-2x}\sin(2x)\:\text{d}x \quad \textsf{from both sides and add the constant C}:

\implies \displaystyle -2\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+\text{C}

Divide both sides by 2:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{4}e^{-2x}\sin (2x) +\dfrac{1}{4}e^{-2x}\cos(2x)+\text{C}

Rewrite in the same format as the given integral:

\displaystyle \implies - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

5 0
2 years ago
Other questions:
  • Hcf is 16 and 48 if one number is 16 find the another number​
    7·1 answer
  • Someone can explain to me how I have to do this? please
    9·2 answers
  • 50 points for who ever helps <br> 5√x 14 <br> simplify
    5·2 answers
  • An adult african elephant weighs 8.25 tons.how much do 27 elephant's weighs
    11·1 answer
  • Which of the following ratios is not equivalent to 6:10?<br><br> 3/5<br> 9/15<br> 48/80<br> 24/45
    14·1 answer
  • Use the functions to answer the question.
    6·2 answers
  • Brainliest badge you help me no kizzy
    10·2 answers
  • Today, Alonso walked 1 mile in 0.5 hours.
    12·1 answer
  • I need lots of help on this :(
    5·1 answer
  • What is the area of this figure?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!