Hence, the sum of the given GP is 16347
<h2>What is a series?</h2>
a series is the cumulative sum of a given sequence of terms. Typically, these terms are real or complex numbers, but much more generality is possible.
<h3>How to solve?</h3>
we can identify from the given geomertric series.
first term = a(say) = 3
geometric factor of progression = r(say) = 4
Sum of the first 7 terms = a(
) ,where n is 7
Sum = 3(
) = 16348-1
= 16347
Hence, the sum of the given GP is 16347.
to learn more about series: brainly.com/question/12578626
#SPJ4
Answer:

Step-by-step explanation:
Given

Required
Write the variables and constants on different sides

Add 2x to both sides


Add 5 to both sides



Hence, the equation is

Solving further [divide both sides by 5]

Answer:
32.66 units
Step-by-step explanation:
We are given that

Point A=(-2,-4) and point B=(1,20)
Differentiate w.r. t x

We know that length of curve

We have a=-2 and b=1
Using the formula
Length of curve=
Using substitution method
Substitute t=12x+14
Differentiate w.r t. x


Length of curve=
We know that

By using the formula
Length of curve=![s=\frac{1}{12}[\frac{t}{2}\sqrt{1+t^2}+\frac{1}{2}ln(t+\sqrt{1+t^2})]^{1}_{-2}](https://tex.z-dn.net/?f=s%3D%5Cfrac%7B1%7D%7B12%7D%5B%5Cfrac%7Bt%7D%7B2%7D%5Csqrt%7B1%2Bt%5E2%7D%2B%5Cfrac%7B1%7D%7B2%7Dln%28t%2B%5Csqrt%7B1%2Bt%5E2%7D%29%5D%5E%7B1%7D_%7B-2%7D)
Length of curve=![s=\frac{1}{12}[\frac{12x+14}{2}\sqrt{1+(12x+14)^2}+\frac{1}{2}ln(12x+14+\sqrt{1+(12x+14)^2})]^{1}_{-2}](https://tex.z-dn.net/?f=s%3D%5Cfrac%7B1%7D%7B12%7D%5B%5Cfrac%7B12x%2B14%7D%7B2%7D%5Csqrt%7B1%2B%2812x%2B14%29%5E2%7D%2B%5Cfrac%7B1%7D%7B2%7Dln%2812x%2B14%2B%5Csqrt%7B1%2B%2812x%2B14%29%5E2%7D%29%5D%5E%7B1%7D_%7B-2%7D)
Length of curve=
Length of curve=
Length of curve=
Answer:
The students can group themselves in 360360 ways
Step-by-step explanation:
For this exercise we need to use the following equation:

This equation give us the number of assignation of n elements in k cell, where n1, n2, ..nk are the element that are in every cell
In this case we have 15 student that need to be assign in three vehicles with an specific capacity. This vehicles would be the equivalent to cells, so we can write the equation as:

Because the first vehicle have 7 seating, the second vehicle have 5 seating and the third vehicle have 3 seating.
Solving the equation we get 360360 ways to organized 15 students in three vehicles with capacity of 7, 5 and 3 seating.