Answer:
I would say it would be c 0.53
Step-by-step explanation: Let's begin by finding the
greatest common factor for the numbers 65 and 39.
I would make a factor tree and break up 65 and 39.
So 65 is 13 x 5 and 39 is 13 x 3.
Since the 13's match up, the greatest
common factor between 65 and 39 is 13.
For the variables, we use the smallest power on each of them.
So we use a^3 and b^4 to get 13a^3b^4 as our GCF.
Answer:
x = 6
Step-by-step explanation:
Given ∠ 1 = ∠ 2 then the segment is an angle bisector and the ratios of sides to base are equal, that is
=
( cross- multiply )
x(x - 4) = 12 ← distribute left side
x² - 4x = 12 ( subtract 12 from both sides )
x² - 4x - 12 = 0 ← in standard form
(x - 6)(x + 2) = 0 ← in factored form
Equate each factor to zero and solve for x
x - 6 = 0 ⇒ x = 6
x + 2 = 0 ⇒ x = - 2
However, x > 0 , thus x = 6
Answer:
![m \times H=\left[\begin{array}{c c c}\boxed{-9} & \boxed{36} & \boxed{-\dfrac{9}{2}}\end{array}\right]](https://tex.z-dn.net/?f=m%20%5Ctimes%20H%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20c%20c%7D%5Cboxed%7B-9%7D%20%26%20%5Cboxed%7B36%7D%20%26%20%5Cboxed%7B-%5Cdfrac%7B9%7D%7B2%7D%7D%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
<u>Calculate the value of m</u>
Given:
![3\left[\begin{array}{c c}-1 & 2 \\4 & 8\end{array}\right]=\dfrac{2}{3}m \times \left[\begin{array}{c c}-1 & 2 \\4 & 8\end{array}\right]](https://tex.z-dn.net/?f=3%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20c%7D-1%20%26%202%20%5C%5C4%20%26%208%5Cend%7Barray%7D%5Cright%5D%3D%5Cdfrac%7B2%7D%7B3%7Dm%20%5Ctimes%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20c%7D-1%20%26%202%20%5C%5C4%20%26%208%5Cend%7Barray%7D%5Cright%5D)
Therefore:



<u>Calculate the value of H</u>
Given:
![\left(H+ \left[\begin{array}{c c c}1 & 4 & -2\end{array}\right]\right)+\left[\begin{array}{c c c}3 & 2 & -6\end{array}\right]=\left[\begin{array}{c c c}-2 & 8 & -1\end{array}\right]+\left(\left[\begin{array}{c c c}1 & 4 & -2\end{array}\right]+\left[\begin{array}{c c c}3 & 2 & -6\end{array}\right]\right)](https://tex.z-dn.net/?f=%5Cleft%28H%2B%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20c%20c%7D1%20%26%204%20%26%20-2%5Cend%7Barray%7D%5Cright%5D%5Cright%29%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20c%20c%7D3%20%26%202%20%26%20-6%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20c%20c%7D-2%20%26%208%20%26%20-1%5Cend%7Barray%7D%5Cright%5D%2B%5Cleft%28%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20c%20c%7D1%20%26%204%20%26%20-2%5Cend%7Barray%7D%5Cright%5D%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20c%20c%7D3%20%26%202%20%26%20-6%5Cend%7Barray%7D%5Cright%5D%5Cright%29)
Therefore:
![\implies H= \left[\begin{array}{c c c}-2 & 8 & -1\end{array}\right]](https://tex.z-dn.net/?f=%5Cimplies%20H%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20c%20c%7D-2%20%26%208%20%26%20-1%5Cend%7Barray%7D%5Cright%5D)
<u />
<u>Calculating m × H</u>
<u />
<u />![\implies m \times H=\dfrac{9}{2} \times \left[\begin{array}{c c c}-2 & 8 & -1\end{array}\right]](https://tex.z-dn.net/?f=%5Cimplies%20m%20%5Ctimes%20H%3D%5Cdfrac%7B9%7D%7B2%7D%20%5Ctimes%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20c%20c%7D-2%20%26%208%20%26%20-1%5Cend%7Barray%7D%5Cright%5D)
<u />![\implies m \times H=\left[\begin{array}{c c c}\dfrac{9}{2}(-2) & \dfrac{9}{2}(8) & \dfrac{9}{2}(-1)\end{array}\right]](https://tex.z-dn.net/?f=%5Cimplies%20m%20%5Ctimes%20H%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20c%20c%7D%5Cdfrac%7B9%7D%7B2%7D%28-2%29%20%26%20%5Cdfrac%7B9%7D%7B2%7D%288%29%20%26%20%5Cdfrac%7B9%7D%7B2%7D%28-1%29%5Cend%7Barray%7D%5Cright%5D)
<u />