1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sveta_85 [38]
2 years ago
10

Divided: x³-2x²-x+2 by x+1. Using long division method.​

Mathematics
2 answers:
Step2247 [10]2 years ago
8 0
<h2><u>ANSWER</u><u>:</u></h2>

<h3><u>2</u></h3>

<h2><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u></h2>

<u>CARR</u><u>Y</u><u> ON</u><u> LEARNING</u>

<u>CAN</u><u> </u><u>YOU</u><u> BRAINLEST</u><u> ME</u><u> PLEASE</u>

Aliun [14]2 years ago
7 0

\large\underline{\sf{Solution-}}

Given that

\purple{\rm :\longmapsto\:Dividend =  {x}^{3} -  {2x}^{2} - x + 2}

and

\purple{\rm :\longmapsto\:Divisor = x + 1}

So, By using Long Division Method, we have

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{}}}&{\underline{\sf{\:\: {x}^{2} - 3x + 2\:\:}}}\\ {\underline{\sf{x  + 1}}}& {\sf{\: {x}^{3}  -  {2x}^{2} - x + 2 \:\:}} \\{\sf{}}& \underline{\sf{- {x}^{3} -  {x}^{2} \:  \: \:  \:  \:  \:  \:  \:  \:  \: \:\:}} \\ {{\sf{}}}& {\sf{\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  - 3{x}^{2} - x +2  \:  \:  \:  \:   \:  \:  \:  \:\:}} \\{\sf{}}& \underline{\sf{\:\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  3{x}^{2} + 3x  \:  \:  \:  \:  \:  \: \:\:}} \\ {\underline{\sf{}}}& {\sf{\:\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 2x  + 2 \:\:}} \\{\sf{}}& \underline{\sf{\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: - 2x - 2\:\:}} \\ {\underline{\sf{}}}& {\sf{\:\: \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 0\:\:}}  \end{array}\end{gathered}\end{gathered}\end{gathered}

<u>So, </u>

\bf\implies \:Remainder = 0

<u>Verification </u>

\purple{\rm :\longmapsto\:Dividend =  {x}^{3} -  {2x}^{2} - x + 2}

\purple{\rm :\longmapsto\:Divisor = x + 1}

\purple{\rm :\longmapsto\:Remainder = 0}

\purple{\rm :\longmapsto\:Quotient =  {x}^{2}  - 3x + 2}

<u>Now, Consider </u>

\rm :\longmapsto\:Divisor \times Quotient + Remainder

\rm \:  =  \: (x + 1)( {x}^{2} - 3x + 2) + 0

\rm \:  =  \:  {x}^{3} -  {3x}^{2} + 2x +  {x}^{2} - 3x + 2

\rm \:  =  \:  {x}^{3} -  {2x}^{2} - x + 2

\rm \:  =  \: Dividend

<u>Hence, Verified</u>

You might be interested in
Please help... I have no clue
muminat

Answer:

OPTION C:  Sin C - Cos C = s - r

Step-by-step explanation:

ABC is a right angled triangle. ∠A = 90°, from the figure.

Therefore, BC = hypotenuse, say h

Now, we find the length of AB and AC.

We know that:   $ \textbf{Sin A} =  \frac{\textbf{opp}}{\textbf{hyp}} $

and    $ \textbf{Cos A} = \frac{\textbf{adj}}{\textbf{hyp}} $

Given, Sin B = r and Cos B = s

⇒    $ Sin B = r = \frac{opp}{hyp} = \frac{AC}{BC} = \frac{AC}{h} $

⇒ $ \textbf{AC} = \textbf{rh} $

Hence, the length of the side AC = rh

Now, to compute the length of AB, we use Cos B.

$ Cos B = s = \frac{adj}{hyp} = \frac{AB}{BC} = \frac{AB}{h} $

⇒  $ \textbf{AB} = \textbf{sh} $

Hence, the length of the side AB = sh

Now, we are asked to compute Sin C - Cos C.

$ Sin C = \frac{opp}{hyp} $

⇒  $ Sin C = \frac{AB}{BC} $

              $ = \frac{sh}{h} $

               = s

Sin C = s

$  Cos C = \frac{adj}{hyp} $

$ \implies Cos C = \frac{AC}{BC} $

⇒ Cos C = $ \frac{rh}{h} $

Therefore, Cos C = r

So, Sin C - Cos C = s - r, which is OPTION C and is the right answer.

5 0
3 years ago
Can someone help explain how to work this out.
ser-zykov [4K]
Z+2.5=5.2-3.2z
z+3.2z=5.2-2.5
4.2z=2.7
z=9/14
That's your answer and that's how you work out.
3 0
3 years ago
jake is hiking a trail that leads to the top of a canyon. The trail 4.2 miles long, and jake plans to stop for lunch after he co
Ksivusya [100]
The answer will be 2.2 miles

5 0
3 years ago
Is the fraction 11/20 a repeting and termnating decimal?
viktelen [127]

Answer:

This is a terminating decimal.

Step-by-step explanation:

11/20 = 0.55

4 0
3 years ago
Read 2 more answers
Quadrilateral PQRS is dilated by a scale factor of 1/2 with point R as the center of dilation, resulting in the image P'Q'R'S'.
Pachacha [2.7K]

The statement that is true about line segment P'S' is (c) Segment P'S' s 4 units long and lies on a different segment

<h3>How to determine the true statement?</h3>

The complete question is in the attached image

From the image, we have:

PS = 8 units

This means that:

P'S' = 1/2 * PS

So, we have:

P'S' = 1/2 * 8

Evaluate

P'S' = 4

Also, the segment PS and P'S' do not lie on the same segment

Hence, the true statement is (c)

Read more about dilation at:

brainly.com/question/13176891

#SPJ1

3 0
2 years ago
Other questions:
  • Alan is 5 years older than Bob. Bob is twice as old as Cindy. All their ages add up to 20. What are their ages?
    8·1 answer
  • Suppose that m∠MKN = 55°. What is m∠MCN?<br> !please no absurd answers!
    13·2 answers
  • Is this proportional​
    6·1 answer
  • Help idk what the answer is!!!
    5·1 answer
  • A 200 foot wire is attached from the top of a tower to a point on the ground 40 feet from the base of the tower. Find the height
    14·2 answers
  • Which of the following is equivalent to the complex number i8?
    13·1 answer
  • Is the sequence arithmetic, geometric or neither? Then, find the next three terms. 0, 3, 6, 9, 12, ___, ___, ____.
    14·2 answers
  • Suppose you had a population of fish whose lengths were normally distributed with a mean of 50 centimeters and a standard deviat
    11·1 answer
  • Can u help me pls, thank you very much, what I’m a suppose to do
    11·1 answer
  • SOLVE: 1/2 x 1/5 = *
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!