Natural numbers are closed under division: false.
A set is closed under a certain operation if the results of that operation are always inside that set.
So, if natural numbers were closed under division, the division of two natural numbers would always be a natural number.
You have plenty of counterexamples, to pick one you may divide any odd number by 2: 5/2 is not a natural number.
Negative numbers are closed under addition: true.
Let
be two positive numbers. So,
are two negative numbers. Their sum is

And since
is positive, we deduce that
is negative, so the sum of two negative numbers is still negative.
Prime numbers are closed under subtraction: false.
This would mean that the subtraction of two primes is also a prime. Again, there are many counterexamples: 7 is prime and so is 3, but their difference 7-3 is 4, which is not prime.
Hope this helps, although, if you don't understand something, tell me!
I did this last semester and I would remember it but unfortunately this was the only section I didn't study for the final bc we did one day on it. I'm sorry. Good luck.
Answer:
nuts
Step-by-step explanation:
Answer:
(-8/7 ; 5/7)
Step-by-step explanation:
5t + 1/2s = 3 - - - (1)
3t - 6s = 9 - - - - - (2)
Multiply (1) by 12 and (2) by 1
Add the result to eliminate s
60t + 6s = 36
3t - 6s = 9
____________
63t = 45
t = 45 / 63
t = 5/7
Put t = 5/7 in either (1) or (2) to obtain the value of s
3(5/7) - 6s = 9
15/7 - 6s = 9
-6s = 9 - 15/7
-6s = (63 - 15)/7
-6s = 48/7
s = 48/7 * - 1/6
s = - 8/7