<h2>
The required solution is x = 6 and y = 11 </h2>
Step-by-step explanation:
Given system of equations are
x+5y = 11 and x-y =5
![X=\left[\begin{array}{c}x\\y\end{array}\right]](https://tex.z-dn.net/?f=X%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%5C%5Cy%5Cend%7Barray%7D%5Cright%5D)
and ![B= \left[\begin{array}{c}11\\5\end{array}\right]](https://tex.z-dn.net/?f=B%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D11%5C%5C5%5Cend%7Barray%7D%5Cright%5D)
∴AX=B
![adj A = \left[\begin{array}{cc}{-1}&{-5}\\{-1}&1\end{array}\right]](https://tex.z-dn.net/?f=adj%20A%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%7B-1%7D%26%7B-5%7D%5C%5C%7B-1%7D%261%5Cend%7Barray%7D%5Cright%5D)

∴
So,![A^{-1} =\frac{ \left[\begin{array}{cc}{-1}&{-5}\\{-1}&1\end{array}\right]}{-6}](https://tex.z-dn.net/?f=A%5E%7B-1%7D%20%3D%5Cfrac%7B%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%7B-1%7D%26%7B-5%7D%5C%5C%7B-1%7D%261%5Cend%7Barray%7D%5Cright%5D%7D%7B-6%7D)
![A^{-1} ={ \left[\begin{array}{c \c} {{\frac{1}{6} }}&{\frac{5}{6}}\ \\ {{\frac{1}{6} }}&{\frac{-1}{6}} \end{array}\right]}](https://tex.z-dn.net/?f=A%5E%7B-1%7D%20%3D%7B%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20%5Cc%7D%20%20%7B%7B%5Cfrac%7B1%7D%7B6%7D%20%7D%7D%26%7B%5Cfrac%7B5%7D%7B6%7D%7D%5C%20%5C%5C%20%20%7B%7B%5Cfrac%7B1%7D%7B6%7D%20%7D%7D%26%7B%5Cfrac%7B-1%7D%7B6%7D%7D%20%5Cend%7Barray%7D%5Cright%5D%7D)

⇒![\left[\begin{array}{c}x\\y\end{array}\right] ={ \left[\begin{array}{c \c} {{\frac{1}{6} }}&{\frac{5}{6}}\ \\ {{\frac{1}{6} }}&{\frac{-1}{6}} \end{array}\right]} \times \left[\begin{array}{c}11\\5\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%5C%5Cy%5Cend%7Barray%7D%5Cright%5D%20%3D%7B%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20%5Cc%7D%20%20%7B%7B%5Cfrac%7B1%7D%7B6%7D%20%7D%7D%26%7B%5Cfrac%7B5%7D%7B6%7D%7D%5C%20%5C%5C%20%20%7B%7B%5Cfrac%7B1%7D%7B6%7D%20%7D%7D%26%7B%5Cfrac%7B-1%7D%7B6%7D%7D%20%5Cend%7Barray%7D%5Cright%5D%7D%20%5Ctimes%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D11%5C%5C5%5Cend%7Barray%7D%5Cright%5D)
⇒![\left[\begin{array}{c}x\\y\end{array}\right] ={ \left[\begin{array}{c} {6}\\ {11} \end{array}\right]}](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%5C%5Cy%5Cend%7Barray%7D%5Cright%5D%20%3D%7B%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D%20%20%7B6%7D%5C%5C%20%20%7B11%7D%20%5Cend%7Barray%7D%5Cright%5D%7D)
∴ x= 6 and y = 11
The required solution is x = 6 and y = 11
Hi there!
Let's solve this equation step by step!
6f + 9g = 3g + f
To solve for f, we need to bring all the terms in the equation with an f in it to the left, and all the other terms (with a g) to the right.
First subtract f from both sides.
5f + 9g = 3g
Now subtract 9g from both sides.
5f = -6g
And finally divide both sides by 5.
f = (-6/5)g
Hence, your answer;

~ Hope this helps you!
18/15/12/9 = 0.0111111111111
Have a great evening. I hope this helped! :)
Answer:
Ratio of x-coordinates:




Ration of y-coordinates:




Step-by-step explanation:
The table is asking for the ratio of x-coordinates for each point (A, B, C and D) for both the image and pre-image. The ratio is the image 'x' or 'y' value ÷ the pre-image 'x' or 'y' value. Each ratio should be expressed in simplest form and should show the same pattern of dilation, or same scale factor. In this case, the second figure is 1/2 the size of the original figure.
Answer: Hope this helps
y = 3/5x + 100
Slope: 3/5
Y-int: 100
Step-by-step explanation:
y = mx + b
<em>replace b with y-int</em>
y = mx + 100
<em>replace m with the slope which is 3/5</em>
y = 3/5x + 100
<em>How do you get slope?</em>
<em>Well I did rise/run with two points so I saw it ran 5 squares and rose only 3.</em>
<em>How do you get the y-int?</em>
<em>Well the y-int is the point where x is 0. So using the point (0,100), since x is 0, the y-int is 100.</em>