Answer: (a) e ^ -3x (b)e^-3x
Step-by-step explanation:
I suggest the equation is:
d/dx[integral (e^-3t) dt
First we integrate e^-3tdt
Integral(e ^ -3t dt) as shown in attachment and then we differentiate the result as shown in the attachment.
(b) to differentiate the integral let x = t, and substitute into the expression.
Therefore dx = dt
Hence, d/dx[integral (e ^-3x dx)] = e^-3x
Answer:


Step-by-step explanation:
<u>Trigonometric Ratios
</u>
The ratios of the sides of a right triangle are called trigonometric ratios.
The longest side of the right triangle is called the hypotenuse and the other two sides are the legs.
Selecting any of the acute angles as a reference, it has an adjacent side and an opposite side. The trigonometric ratios are defined upon those sides.
The image provided shows a right triangle whose hypotenuse is given. We are required to find the value of both legs.
Let's pick the angle of 30°. Its adjacent side is y. We can use the cosine ration, which is defined as follows:


Solving for y:

Since:


Simplifying:

Now we use the sine ratio:


Solving for x:

Since:


Simplifying:

The choices are not clear, but it seems like the correct answer is C.


Just use a calculator and you will get -1/2
A=138° B=180° C=180° D=138°
This is because angle QRS and QTS would equal 180° Bc they are supplementary. So 180-42=138. And since they are supplementary and vertical angles, angle ST would also be 42° and QT would also be 138° because angle RS is 138°