Answer:
Since the sum is same, the associative property of addition holds true. Therefore, it can be concluded that the grouping of numbers in any order does not change the sum. Example 6: Consider the algebraic expression, .
Step-by-step explanation:
not sure
bearing in mind that standard form for a linear equation means
• all coefficients must be integers, no fractions
• only the constant on the right-hand-side
• all variables on the left-hand-side, sorted
• "x" must not have a negative coefficient

![\bf \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-7=1[x-(-1)]\implies y-7=x+1 \\\\\\ y=x+8\implies \boxed{-x+y=8}\implies \stackrel{\textit{standard form}}{x-y=-8}](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Barray%7D%7B%7Cc%7Cll%7D%20%5Ccline%7B1-1%7D%20%5Ctextit%7Bpoint-slope%20form%7D%5C%5C%20%5Ccline%7B1-1%7D%20%5C%5C%20y-y_1%3Dm%28x-x_1%29%20%5C%5C%5C%5C%20%5Ccline%7B1-1%7D%20%5Cend%7Barray%7D%5Cimplies%20y-7%3D1%5Bx-%28-1%29%5D%5Cimplies%20y-7%3Dx%2B1%20%5C%5C%5C%5C%5C%5C%20y%3Dx%2B8%5Cimplies%20%5Cboxed%7B-x%2By%3D8%7D%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Bstandard%20form%7D%7D%7Bx-y%3D-8%7D)
just to point something out, is none of the options, however -x + y = 8, is one, though improper.
We have been given that at north shire high school 87.5% of the teachers have a masters degree. Total number of teachers is 128.
Let us find how many teachers have a masters degree.



Therefore, 112 teachers have a masters degree.
Answer:
3y √21 + 2 y√15
Step-by-step explanation:
To simply, we open up the bracket
We have this as;
√(189y^2) + √60y
= 3y √21 + 2 y√15