
We have 2 denominators that we need to get rid of. Whenever there are the denominators, all we have to do is multiply all whole equation with the denominators.
Our denominators are both 2 and x+1. Therefore, we multiply the whole equation by 2(x+1)
![\frac{x}{2}[2(x+1)]-\frac{2}{x+1}[2(x+1)] = 1[2(x+1)]](https://tex.z-dn.net/?f=%5Cfrac%7Bx%7D%7B2%7D%5B2%28x%2B1%29%5D-%5Cfrac%7B2%7D%7Bx%2B1%7D%5B2%28x%2B1%29%5D%20%3D%201%5B2%28x%2B1%29%5D)
Then shorten the fractions.
![\frac{x}{2}[2(x+1)]-\frac{2}{x+1}[2(x+1)] = 1[2(x+1)]\\x(x+1)-2(2)=1(2x+2)](https://tex.z-dn.net/?f=%5Cfrac%7Bx%7D%7B2%7D%5B2%28x%2B1%29%5D-%5Cfrac%7B2%7D%7Bx%2B1%7D%5B2%28x%2B1%29%5D%20%3D%201%5B2%28x%2B1%29%5D%5C%5Cx%28x%2B1%29-2%282%29%3D1%282x%2B2%29)
Distribute in all.

We should get like this. Because the polynomial is 2-degree, I'd suggest you to move all terms to one place. Therefore, moving 2x+2 to another side and subtract.

We are almost there. All we have to do is, solving for x by factoring. (Although there are more than just factoring but factoring this polynomial is faster.)

Thus, the answer is x = 3, -2
Answer:
Step-by-step explanation:
The zeros of a function are where it crosses the x axis, so just find the coordinates for the x intercepts.
1.
and 
2.
and 
Answer:
A scale to plot data
It is hard to tell the difference between the choices. If they are the following:
- a starting point with equal intervals that follow
- a stopping point for the data that can fit on the graph
- a way to locate data
- a scale to plot data
You take $22,000.00 + $625.00= 22,625.00 (which is the sales tax)
Take $22,625.00 x .06=$1,357.50
Then take $22,625.00 + $<span>1,357.50 +$40.00 = $24.022.50</span>