parallel lines have the same exact slope hmmm what's the slope of y = 2/3x-7 anyway? well, low and behold, is already in slope-intercept form, therefore
.
so we're really looking for the equation of a line whose slope is 2/3, and runs through 3, -1.

p=1
Step-by-step explanation:


well, we know it's a rectangle, so that means the sides JK = IL and JI = KL, so
![\stackrel{JK}{3x+21}~~ = ~~\stackrel{IL}{6y}\implies 3(x+7)=6y\implies x+7=\cfrac{6y}{3} \\\\\\ x+7=2y\implies \boxed{x=2y-7} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{JI}{6y-6}~~ = ~~\stackrel{KL}{2x+20}\implies 6(y-1)=2(x+10)\implies \cfrac{6(y-1)}{2}=x+10 \\\\\\ 3(y-1)=x+10\implies 3y-3=x+10\implies \stackrel{\textit{substituting from the 1st equation}}{3y-3=(2y-7)+10} \\\\\\ 3y-3=2y+3\implies y-3=3\implies \blacksquare~~ y=6 ~~\blacksquare ~\hfill \blacksquare~~ \stackrel{2(6)~~ - ~~7}{x=5} ~~\blacksquare](https://tex.z-dn.net/?f=%5Cstackrel%7BJK%7D%7B3x%2B21%7D~~%20%3D%20~~%5Cstackrel%7BIL%7D%7B6y%7D%5Cimplies%203%28x%2B7%29%3D6y%5Cimplies%20x%2B7%3D%5Ccfrac%7B6y%7D%7B3%7D%20%5C%5C%5C%5C%5C%5C%20x%2B7%3D2y%5Cimplies%20%5Cboxed%7Bx%3D2y-7%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7BJI%7D%7B6y-6%7D~~%20%3D%20~~%5Cstackrel%7BKL%7D%7B2x%2B20%7D%5Cimplies%206%28y-1%29%3D2%28x%2B10%29%5Cimplies%20%5Ccfrac%7B6%28y-1%29%7D%7B2%7D%3Dx%2B10%20%5C%5C%5C%5C%5C%5C%203%28y-1%29%3Dx%2B10%5Cimplies%203y-3%3Dx%2B10%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Bsubstituting%20from%20the%201st%20equation%7D%7D%7B3y-3%3D%282y-7%29%2B10%7D%20%5C%5C%5C%5C%5C%5C%203y-3%3D2y%2B3%5Cimplies%20y-3%3D3%5Cimplies%20%5Cblacksquare~~%20y%3D6%20~~%5Cblacksquare%20~%5Chfill%20%5Cblacksquare~~%20%5Cstackrel%7B2%286%29~~%20-%20~~7%7D%7Bx%3D5%7D%20~~%5Cblacksquare)
Your ratio is 4:1 because it takes 4 cups of water for every cup of sugar.
Answer:
The length of each red rod is 10 cm and the length of each blue rod is 14 cm
Step-by-step explanation:
Let
x ----> the length of each red rod in centimeters
y ----> the length of each blue rod in centimeters
we know that
----> equation A
----> equation B
Solve the system by graphing
Remember that the solution of the system of equations is the intersection point both graphs
using a graphing tool
The solution is the point (10,14)
see the attached figure
therefore
The length of each red rod is 10 cm and the length of each blue rod is 14 cm