The expression
is an illustration of definite integrals
The approximated value of the definite integral is 0.0059
<h3>How to evaluate the definite integral?</h3>
The definite integral is given as:

For arctan(x), we have the following series equation:

Multiply both sides of the equation by x^3.
So, we have:

Apply the law of indices


Evaluate the product

Introduce the integral sign to the equation

Integrate the right hand side
![\int\limits^{1/2}_{0} x^3 \arctan(x)\ dx =[ \sum\limits^{\infty}_{n = 0} {(-1)^n \cdot \frac{x^{2n + 4}}{2n + 1}} ]\limits^{1/2}_{0}](https://tex.z-dn.net/?f=%5Cint%5Climits%5E%7B1%2F2%7D_%7B0%7D%20%20x%5E3%20%5Carctan%28x%29%5C%20dx%20%3D%5B%20%5Csum%5Climits%5E%7B%5Cinfty%7D_%7Bn%20%3D%200%7D%20%7B%28-1%29%5En%20%5Ccdot%20%5Cfrac%7Bx%5E%7B2n%20%2B%204%7D%7D%7B2n%20%2B%201%7D%7D%20%5D%5Climits%5E%7B1%2F2%7D_%7B0%7D)
Expand the equation by substituting 1/2 and 0 for x
![\int\limits^{1/2}_{0} x^3 \arctan(x)\ dx =[ \sum\limits^{\infty}_{n = 0} {(-1)^n \cdot \frac{(1/2)^{2n + 4}}{2n + 1}} ] - [ \sum\limits^{\infty}_{n = 0} {(-1)^n \cdot \frac{0^{2n + 4}}{2n + 1}} ]](https://tex.z-dn.net/?f=%5Cint%5Climits%5E%7B1%2F2%7D_%7B0%7D%20%20x%5E3%20%5Carctan%28x%29%5C%20dx%20%3D%5B%20%5Csum%5Climits%5E%7B%5Cinfty%7D_%7Bn%20%3D%200%7D%20%7B%28-1%29%5En%20%5Ccdot%20%5Cfrac%7B%281%2F2%29%5E%7B2n%20%2B%204%7D%7D%7B2n%20%2B%201%7D%7D%20%5D%20-%20%5B%20%5Csum%5Climits%5E%7B%5Cinfty%7D_%7Bn%20%3D%200%7D%20%7B%28-1%29%5En%20%5Ccdot%20%5Cfrac%7B0%5E%7B2n%20%2B%204%7D%7D%7B2n%20%2B%201%7D%7D%20%5D)
Evaluate the power
![\int\limits^{1/2}_{0} x^3 \arctan(x)\ dx =[ \sum\limits^{\infty}_{n = 0} {(-1)^n \cdot \frac{(1/2)^{2n + 4}}{2n + 1}} ] - 0](https://tex.z-dn.net/?f=%5Cint%5Climits%5E%7B1%2F2%7D_%7B0%7D%20%20x%5E3%20%5Carctan%28x%29%5C%20dx%20%3D%5B%20%5Csum%5Climits%5E%7B%5Cinfty%7D_%7Bn%20%3D%200%7D%20%7B%28-1%29%5En%20%5Ccdot%20%5Cfrac%7B%281%2F2%29%5E%7B2n%20%2B%204%7D%7D%7B2n%20%2B%201%7D%7D%20%5D%20-%200)

The nth term of the series is then represented as:

Solve the series by setting n = 0, 1, 2, 3 ..........




..............
At n = 2, we can see that the value of the series has 4 zeros before the first non-zero digit
This means that we add the terms before n = 2
This means that the value of
to 4 decimal points is

Evaluate the difference

Approximate to four decimal places

Hence, the approximated value of the definite integral is 0.0059
Read more about definite integrals at:
brainly.com/question/15127807