Answer:
S (1 , 0)
T (7 , 1)
Step-by-step explanation:
If QRST is a parallelogram, P is the mid point of segment QS and segment RT.
Basic formula for mid-point of segment: ((x1+x2)/2 , (y1+y2)/2)
T (x₁ , y₁) S (x₂ , y₂) P (2 , 3) Q (3 , 6) R (-3 , 5)
2 = (x₁ + (-3))/2 x₁ = 7
3 = (y₁ + 5)/2 y₁ = 1
T (7 , 1)
2 = (x₂ + 3))/2 x₂ = 1
3 = (y₂ + 6)/2 y₂ = 0
S (1 , 0)
<em>Detailed</em><em> </em><em>solution</em><em> </em><em>is</em><em> </em><em>attached</em><em>!</em><em>!</em><em>~</em>
- <u>Diagram</u><u> </u><u>for</u><u> </u><u>ques</u><u>.</u><u> </u><u>3</u><u> </u><u>is</u><u> </u><u>also</u><u> </u><u>attached</u><u>!</u><u>!</u>
Axis of symmetry of h(x) is x = 0
for f(x) its x = 2
and for g(x) its x = 3
so its
option 3