In order to solve this problem, we transform the statements into
algebraic expressions. First, we assign the variables.
Let:
x = Gina’s number
y = Sara’s number
For the first equation, we show that Gina’s number is greater
than Sara’s number by 2. For the second equation, we show that the sum of both
numbers is 68.
<span>(1)
</span>x – y = 2
<span>(2)
</span>x + y = 68
<span>We
add the two expressions, which result in the expression: 2x = 70. Then we
divide 70 by 2 to get the value of x. We then have x = 35. Using the second
equation, we solve for y = 68-35. This gives y = 33. To summarize, Gina’s
number is 35 while Sara’s number is 33.</span>
4,760 and then if there’s a unit of measurement
20%, because 20/100 is equal to 20&.
Hope this helps!
Answer:
y = 4x^5 - 12x^4 + 6x and
y = 5x^3 - 2x
Step-by-step explanation:
The system of equations that can be used to find the roots of the equation 4x^5-12x^4+6x=5x^3-2x are;
y = 4x^5 - 12x^4 + 6x and
y = 5x^3 - 2x
We simply formulate two equations by splitting the left and the right hand sides of the given equation.
The next step is to graph these two system of equations on the same graph in order to determine the solution(s) to the given original equation.
The roots of the given equation will be given by the points where these two equations will intersect.
The graph of these two equations is as shown in the attachment below;
The roots are thus;
x = 0 and x = 0.813