Answer:

Step-by-step explanation:
In this problem, one is given a circle with two secants (that is a line that intersects a circle at two points). One is given certain measurements, the problem asks one to find the unknown measurements.
The product of the lengths theorem gives a ratio between the lengths in the secants. Call the part of the secant that is inside the circle (inside), and the part of the secant between the exterior of the circle and the point of intersection of the secants (outside). The sum of (inside) and (outside) make up the entire secant, call this measurement (total). Remember, there are two secants, (
) and (
) in this situation. With these naming in mind, one can state the product of the length ratio as the following:

Alternatively, one can state it like the following ratio:

Apply this ratio to the given problem, substitute the lengths of the sides of the secants in and solve for the unknown.


Cross products, multiply the numerator and denominators of opposite sides of the fraction together,


Simplify,


Inverse operations,


Substitute this value into the equation given for the measure of (EF),

Answer: I did this before and i this before i did b and got it correct
Step-by-step explanation:
The derivative of the function is 2x+6.
At the particular point (2,6), plug in the x coordinate for x.
2(2)+6 = 10
Hope this helps :)
Answer:
76017.69 mm²
631000 mm³
295045.04 mm³
Step-by-step explanation:
Surface area = bh + 2ls + lb
Since the sides of the triangular prism are equal (equilateral triangle) = 60 mm each
Height = 405 mm
The surface area of triangular = 76017.69 mm
The volume of triangular prism :
1/2 * base * height * length
Volume = 631000 mm³
If amount of chocolate inside = 335954.96 mm3
Empty space =
Volume of triangular prism - amount of chocolate inside
631000 - 335954.96
= 295045.04 mm³