
How to mark people's Answer as brainliest?

When we ask any questions, that time many of the user's find it easy and answer our questions but only two users can able to answer our questions. So, When two users answers our questions, remember, there will be a Option “Mark as brainliest” down the one answer & another down of one answer. So, The answer which you think is satisfied to you and is good, then mark that answer as brainliest. If only one user has answered your question, Then the option “Mark as brainliest” wouldn't come quickly, after one day or two days, the Option of marking answer as brainliest will come and also you'll get the notification about it. Also, When you make anyone's answer as brainliest, you also gain some points!
<h3>HOPE IT HELPED YOU TIKKI!! </h3>
MARK ME AS BRAINLIEST IF IT HELPS YOU! (^‿^)
The answer ion know what you speaking
Answer:
- No, the points are evenly distributed about the x-axis.
Explanation:
<u>1. Write the table with the data:</u>
x given predicted residual
1 - 3.5 - 1.1
2 - 2.9 2
3 - 1.1 5.1
4 2.2 8.2
5 3.4 1.3
<u>2. Complete the column of residuals</u>
The residual is the observed (given) value - the predicted value.
- residual = given - predicted.
Thus, the complete table, with the residual values are:
x given predicted residual
1 - 3.5 - 1.1 - 2.4
2 - 2.9 2 - 4.9
3 - 1.1 5.1 - 6.2
4 2.2 8.2 - 6.0
5 3.4 1.3 2.1
<u>3. Residual plot</u>
You must plot the last column:
x residual
1 - 2.4
2 - 4.9
3 - 6.2
4 - 6.0
5 2.1
See the plot attached.
<em>Does the residual plot show that the line of best fit is appropriate for the data?</em>
Ideally, a residual plot for a line of best fit that is appropiate for the data must not show any pattern; the points should be randomly distributed about the x-axis.
But the points of the plot are not randomly distributed about the x-axis: there are 4 points below the x-axis and 1 point over the x-axis: there are more negative residuals than positive residuals. This is a pattern. Also, you could say that they show a curve pattern, which drives to the same conclusion: the residual plot shows that the line of best fit is not appropiate for the data.
Thus, the conclusion should be: No, the points have a pattern.
- 1. "<em>Yes, the points have no pattern</em>": false, because as shown, the points do have a pattern, which makes the residual plots does not show that the line of best fit is appropiate for the data.
- 2. "<em>No, the points are evenly distributed about the x-axis</em>": true. As already said the points have a pattern. It is a curved pattern, and this <em>shows the line of best fit is not appropiate for the data.</em>
- 3. "<em>No, the points are in a linear pattern</em>": false. The points are not in a linear pattern.
- 4. "<em>Yes, the points are in a curved pattern</em>": false. Because the points are in a curved pattern, the residual plot shows that the line of best fit is not appropiate for the data.
1×10-7 moles per liter, good luck