Answer:
Water has a high Cohesion because of Hydrogen bonding. This is important as transport of water in the Xylem in plants relies on water being pulled up. Cohesion also gives the water a high surface tension, allowing small organisms, such as Pond Skaters, to walk along it.
Explanation:
Water molecules forming hydrogen bonds with one another. The partial negative charge on the O of one molecule can form a hydrogen bond with the partial positive charge on the hydrogens of other molecules. Water molecules are also attracted to other polar molecules and to ions.
Plants obtain the hydrogen they need from water molecules. Don't try to feed your plant hydrogen gas -- your plant wouldn't know what to do with it if you did. As long as they have water, plants can readily obtain all the hydrogen they need. :)
A. Shellfish will disappear first if an estuary was destroyed.
Answer: Biological polymers are large molecules composed of many similar smaller molecules linked together in a chain-like fashion. The individual smaller molecules are called monomers. When small organic molecules are joined together, they can form giant molecules or polymers. These giant molecules are also called macromolecules. Natural polymers are used to build tissue and other components in living organisms.
Generally speaking, all macromolecules are produced from a small set of about 50 monomers. Different macromolecules vary because of the arrangement of these monomers. By varying the sequence, an incredibly large variety of macromolecules can be produced. While polymers are responsible for the molecular "uniqueness" of an organism, the common monomers are nearly universal.
The variation in the form of macromolecules is largely responsible for molecular diversity. Much of the variation that occurs both within an organism and among organisms can ultimately be traced to differences in macromolecules. Macromolecules can vary from cell to cell in the same organism, as well as from one species to the next.
Explanation:
The kidneys have different layers of connective tissue. The connective tissue in the kidney connects different organs within the kidney. Connective tissue has the same color and same texture. The renal column and renal cortex have the same type of connective tissue, renal fascia. Renal column and renal cortex also appear similar in color and texture because the renal column extends medullary to the renal cortex.